Matches in SemOpenAlex for { <https://semopenalex.org/work/W2575741610> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2575741610 abstract "Wireless Sensor Networks (WSNs) have been regarded as an emerging and promis- ing field in both academia and industry. Currently, such networks are deployed due to their unique properties, such as self-organization and ease of deployment. How- ever, there are still some technical challenges needed to be addressed, such as energy and network capacity constraints. Data aggregation, as a fundamental solution, pro- cesses information at sensor level as a useful digest, and only transmits the digest to the sink. The energy and capacity consumptions are reduced due to less data packets transmission. As a key category of data aggregation, aggregation function, solving how to aggregate information at sensor level, is investigated in this thesis.We make four main contributions: firstly, we propose two new networking-oriented metrics to evaluate the performance of aggregation function: aggregation ratio and packet size coefficient. Aggregation ratio is used to measure the energy saving by data aggregation, and packet size coefficient allows to evaluate the network capac- ity change due to data aggregation. Using these metrics, we confirm that data ag- gregation saves energy and capacity whatever the routing or MAC protocol is used. Secondly, to reduce the impact of sensitive raw data, we propose a data-independent aggregation method which benefits from similar data evolution and achieves better re- covered fidelity. Thirdly, a property-independent aggregation function is proposed to adapt the dynamic data variations. Comparing to other functions, our proposal can fit the latest raw data better and achieve real adaptability without assumption about the application and the network topology. Finally, considering a given application, a tar- get accuracy, we classify the forecasting aggregation functions by their performances. The networking-oriented metrics are used to measure the function performance, and a Markov Decision Process is used to compute them. Dataset characterization and classification framework are also presented to guide researcher and engineer to select an appropriate functions under specific requirements." @default.
- W2575741610 created "2017-01-26" @default.
- W2575741610 creator A5037769722 @default.
- W2575741610 date "2016-06-27" @default.
- W2575741610 modified "2023-09-25" @default.
- W2575741610 title "Data aggregation in wireless sensor networks" @default.
- W2575741610 hasPublicationYear "2016" @default.
- W2575741610 type Work @default.
- W2575741610 sameAs 2575741610 @default.
- W2575741610 citedByCount "1" @default.
- W2575741610 countsByYear W25757416102019 @default.
- W2575741610 crossrefType "dissertation" @default.
- W2575741610 hasAuthorship W2575741610A5037769722 @default.
- W2575741610 hasConcept C120314980 @default.
- W2575741610 hasConcept C124101348 @default.
- W2575741610 hasConcept C132964779 @default.
- W2575741610 hasConcept C158379750 @default.
- W2575741610 hasConcept C159985019 @default.
- W2575741610 hasConcept C177606310 @default.
- W2575741610 hasConcept C18903297 @default.
- W2575741610 hasConcept C192562407 @default.
- W2575741610 hasConcept C199360897 @default.
- W2575741610 hasConcept C24590314 @default.
- W2575741610 hasConcept C26517878 @default.
- W2575741610 hasConcept C31258907 @default.
- W2575741610 hasConcept C38652104 @default.
- W2575741610 hasConcept C41008148 @default.
- W2575741610 hasConcept C4679612 @default.
- W2575741610 hasConcept C82578977 @default.
- W2575741610 hasConcept C86803240 @default.
- W2575741610 hasConceptScore W2575741610C120314980 @default.
- W2575741610 hasConceptScore W2575741610C124101348 @default.
- W2575741610 hasConceptScore W2575741610C132964779 @default.
- W2575741610 hasConceptScore W2575741610C158379750 @default.
- W2575741610 hasConceptScore W2575741610C159985019 @default.
- W2575741610 hasConceptScore W2575741610C177606310 @default.
- W2575741610 hasConceptScore W2575741610C18903297 @default.
- W2575741610 hasConceptScore W2575741610C192562407 @default.
- W2575741610 hasConceptScore W2575741610C199360897 @default.
- W2575741610 hasConceptScore W2575741610C24590314 @default.
- W2575741610 hasConceptScore W2575741610C26517878 @default.
- W2575741610 hasConceptScore W2575741610C31258907 @default.
- W2575741610 hasConceptScore W2575741610C38652104 @default.
- W2575741610 hasConceptScore W2575741610C41008148 @default.
- W2575741610 hasConceptScore W2575741610C4679612 @default.
- W2575741610 hasConceptScore W2575741610C82578977 @default.
- W2575741610 hasConceptScore W2575741610C86803240 @default.
- W2575741610 hasLocation W25757416101 @default.
- W2575741610 hasOpenAccess W2575741610 @default.
- W2575741610 hasPrimaryLocation W25757416101 @default.
- W2575741610 hasRelatedWork W1603326615 @default.
- W2575741610 hasRelatedWork W1988645001 @default.
- W2575741610 hasRelatedWork W2024710115 @default.
- W2575741610 hasRelatedWork W2060040127 @default.
- W2575741610 hasRelatedWork W2075094407 @default.
- W2575741610 hasRelatedWork W2095772607 @default.
- W2575741610 hasRelatedWork W2123071032 @default.
- W2575741610 hasRelatedWork W2133412796 @default.
- W2575741610 hasRelatedWork W2139731687 @default.
- W2575741610 hasRelatedWork W2141450968 @default.
- W2575741610 hasRelatedWork W2142553634 @default.
- W2575741610 hasRelatedWork W2148618011 @default.
- W2575741610 hasRelatedWork W2163805702 @default.
- W2575741610 hasRelatedWork W2167903707 @default.
- W2575741610 hasRelatedWork W2171313854 @default.
- W2575741610 hasRelatedWork W2538795372 @default.
- W2575741610 hasRelatedWork W2543031896 @default.
- W2575741610 hasRelatedWork W2548281295 @default.
- W2575741610 hasRelatedWork W2767593597 @default.
- W2575741610 hasRelatedWork W3033344469 @default.
- W2575741610 isParatext "false" @default.
- W2575741610 isRetracted "false" @default.
- W2575741610 magId "2575741610" @default.
- W2575741610 workType "dissertation" @default.