Matches in SemOpenAlex for { <https://semopenalex.org/work/W2575795810> ?p ?o ?g. }
- W2575795810 endingPage "357" @default.
- W2575795810 startingPage "343" @default.
- W2575795810 abstract "This study had three purposes, all related to evaluating energy expenditure (EE) prediction accuracy from body-worn accelerometers: (1) compare linear regression to linear mixed models, (2) compare linear models to artificial neural network models, and (3) compare accuracy of accelerometers placed on the hip, thigh, and wrists. Forty individuals performed 13 activities in a 90 min semi-structured, laboratory-based protocol. Participants wore accelerometers on the right hip, right thigh, and both wrists and a portable metabolic analyzer (EE criterion). Four EE prediction models were developed for each accelerometer: linear regression, linear mixed, and two ANN models. EE prediction accuracy was assessed using correlations, root mean square error (RMSE), and bias and was compared across models and accelerometers using repeated-measures analysis of variance. For all accelerometer placements, there were no significant differences for correlations or RMSE between linear regression and linear mixed models (correlations: r = 0.71–0.88, RMSE: 1.11–1.61 METs; p > 0.05). For the thigh-worn accelerometer, there were no differences in correlations or RMSE between linear and ANN models (ANN—correlations: r = 0.89, RMSE: 1.07–1.08 METs. Linear models—correlations: r = 0.88, RMSE: 1.10–1.11 METs; p > 0.05). Conversely, one ANN had higher correlations and lower RMSE than both linear models for the hip (ANN—correlation: r = 0.88, RMSE: 1.12 METs. Linear models—correlations: r = 0.86, RMSE: 1.18–1.19 METs; p < 0.05), and both ANNs had higher correlations and lower RMSE than both linear models for the wrist-worn accelerometers (ANN—correlations: r = 0.82–0.84, RMSE: 1.26–1.32 METs. Linear models—correlations: r = 0.71–0.73, RMSE: 1.55–1.61 METs; p < 0.01). For studies using wrist-worn accelerometers, machine learning models offer a significant improvement in EE prediction accuracy over linear models. Conversely, linear models showed similar EE prediction accuracy to machine learning models for hip- and thigh-worn accelerometers and may be viable alternative modeling techniques for EE prediction for hip- or thigh-worn accelerometers." @default.
- W2575795810 created "2017-01-26" @default.
- W2575795810 creator A5001559682 @default.
- W2575795810 creator A5018257522 @default.
- W2575795810 creator A5027909442 @default.
- W2575795810 creator A5082888151 @default.
- W2575795810 date "2017-01-20" @default.
- W2575795810 modified "2023-09-27" @default.
- W2575795810 title "Comparison of linear and non-linear models for predicting energy expenditure from raw accelerometer data" @default.
- W2575795810 cites W1965577195 @default.
- W2575795810 cites W1993761347 @default.
- W2575795810 cites W1999227766 @default.
- W2575795810 cites W2002353621 @default.
- W2575795810 cites W2011781303 @default.
- W2575795810 cites W2019098172 @default.
- W2575795810 cites W2021754517 @default.
- W2575795810 cites W2023559783 @default.
- W2575795810 cites W2026670008 @default.
- W2575795810 cites W2030401894 @default.
- W2575795810 cites W2048606477 @default.
- W2575795810 cites W2051029594 @default.
- W2575795810 cites W2078967742 @default.
- W2575795810 cites W2079462520 @default.
- W2575795810 cites W2079801649 @default.
- W2575795810 cites W2084103512 @default.
- W2575795810 cites W2086199715 @default.
- W2575795810 cites W2094523840 @default.
- W2575795810 cites W2104806243 @default.
- W2575795810 cites W2105046342 @default.
- W2575795810 cites W2108707936 @default.
- W2575795810 cites W2127095067 @default.
- W2575795810 cites W2138572279 @default.
- W2575795810 cites W2148217011 @default.
- W2575795810 cites W2164041372 @default.
- W2575795810 cites W2168524506 @default.
- W2575795810 cites W2180429985 @default.
- W2575795810 cites W2259532985 @default.
- W2575795810 cites W2276660292 @default.
- W2575795810 cites W2279300874 @default.
- W2575795810 cites W2293725939 @default.
- W2575795810 cites W2295454405 @default.
- W2575795810 cites W2317306538 @default.
- W2575795810 cites W2322525544 @default.
- W2575795810 cites W2329483624 @default.
- W2575795810 cites W2334207175 @default.
- W2575795810 cites W2403674276 @default.
- W2575795810 cites W2410833519 @default.
- W2575795810 cites W2468586663 @default.
- W2575795810 cites W2521135770 @default.
- W2575795810 cites W94052953 @default.
- W2575795810 cites W1999965313 @default.
- W2575795810 doi "https://doi.org/10.1088/1361-6579/38/2/343" @default.
- W2575795810 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28107205" @default.
- W2575795810 hasPublicationYear "2017" @default.
- W2575795810 type Work @default.
- W2575795810 sameAs 2575795810 @default.
- W2575795810 citedByCount "48" @default.
- W2575795810 countsByYear W25757958102017 @default.
- W2575795810 countsByYear W25757958102018 @default.
- W2575795810 countsByYear W25757958102019 @default.
- W2575795810 countsByYear W25757958102020 @default.
- W2575795810 countsByYear W25757958102021 @default.
- W2575795810 countsByYear W25757958102022 @default.
- W2575795810 countsByYear W25757958102023 @default.
- W2575795810 crossrefType "journal-article" @default.
- W2575795810 hasAuthorship W2575795810A5001559682 @default.
- W2575795810 hasAuthorship W2575795810A5018257522 @default.
- W2575795810 hasAuthorship W2575795810A5027909442 @default.
- W2575795810 hasAuthorship W2575795810A5082888151 @default.
- W2575795810 hasConcept C105795698 @default.
- W2575795810 hasConcept C111919701 @default.
- W2575795810 hasConcept C139945424 @default.
- W2575795810 hasConcept C152877465 @default.
- W2575795810 hasConcept C163175372 @default.
- W2575795810 hasConcept C33923547 @default.
- W2575795810 hasConcept C41008148 @default.
- W2575795810 hasConcept C48921125 @default.
- W2575795810 hasConcept C55078378 @default.
- W2575795810 hasConcept C89805583 @default.
- W2575795810 hasConceptScore W2575795810C105795698 @default.
- W2575795810 hasConceptScore W2575795810C111919701 @default.
- W2575795810 hasConceptScore W2575795810C139945424 @default.
- W2575795810 hasConceptScore W2575795810C152877465 @default.
- W2575795810 hasConceptScore W2575795810C163175372 @default.
- W2575795810 hasConceptScore W2575795810C33923547 @default.
- W2575795810 hasConceptScore W2575795810C41008148 @default.
- W2575795810 hasConceptScore W2575795810C48921125 @default.
- W2575795810 hasConceptScore W2575795810C55078378 @default.
- W2575795810 hasConceptScore W2575795810C89805583 @default.
- W2575795810 hasFunder F4320306628 @default.
- W2575795810 hasIssue "2" @default.
- W2575795810 hasLocation W25757958101 @default.
- W2575795810 hasLocation W25757958102 @default.
- W2575795810 hasOpenAccess W2575795810 @default.
- W2575795810 hasPrimaryLocation W25757958101 @default.
- W2575795810 hasRelatedWork W1489210197 @default.
- W2575795810 hasRelatedWork W1987874405 @default.
- W2575795810 hasRelatedWork W1992859205 @default.