Matches in SemOpenAlex for { <https://semopenalex.org/work/W2575969892> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2575969892 abstract "A fingerprint recognition system is vulnerable to spoof attacks, where a fake fingerprint is used to circumvent the system. To counter such attacks, an automated spoof detector is used to distinguish images of fake fingerprints from those of real live fingerprints. Most spoof detectors adopt a machine learning approach, where a classifier is trained to distinguish between “spoof” and “live” samples. Such approaches require training samples from both classes. However, there are two fundamental concerns. Firstly, the number of spoof samples available during the training stage is typically much less than the number of live samples, resulting in imbalanced training sets. Secondly, the spoof detector may encounter spoofs fabricated using materials that were not “seen” in the training set, thereby failing to detect them. In order to alleviate some of these concerns, we adopt a One Class Support Vector Machine (OC-SVM) approach that predominantly uses training samples from only a single class, i.e., the live class, to generate a hyper sphere that encompasses most of the live samples. The goal is to learn the concept of a “live” fingerprint. The boundary of the hyper sphere is refined using a small number of spoof samples. The proposed method uses an ensemble of such OC-SVMs based on different feature sets. Experimental results on the LivDet2011 database show the advantages of the proposed ensemble of OC-SVMs for detecting spoofs generated from previously “unseen” materials." @default.
- W2575969892 created "2017-01-26" @default.
- W2575969892 creator A5061834795 @default.
- W2575969892 creator A5089227812 @default.
- W2575969892 date "2016-12-01" @default.
- W2575969892 modified "2023-09-26" @default.
- W2575969892 title "An ensemble of one-class SVMs for fingerprint spoof detection across different fabrication materials" @default.
- W2575969892 cites W1558778037 @default.
- W2575969892 cites W192788472 @default.
- W2575969892 cites W1969793586 @default.
- W2575969892 cites W1970088130 @default.
- W2575969892 cites W1979965748 @default.
- W2575969892 cites W1993986275 @default.
- W2575969892 cites W2000889716 @default.
- W2575969892 cites W2020816142 @default.
- W2575969892 cites W2030869671 @default.
- W2575969892 cites W2086517658 @default.
- W2575969892 cites W2102017713 @default.
- W2575969892 cites W2141362602 @default.
- W2575969892 cites W2142518587 @default.
- W2575969892 cites W2153635508 @default.
- W2575969892 cites W2166266107 @default.
- W2575969892 cites W2508273045 @default.
- W2575969892 cites W3101824741 @default.
- W2575969892 doi "https://doi.org/10.1109/wifs.2016.7823572" @default.
- W2575969892 hasPublicationYear "2016" @default.
- W2575969892 type Work @default.
- W2575969892 sameAs 2575969892 @default.
- W2575969892 citedByCount "49" @default.
- W2575969892 countsByYear W25759698922017 @default.
- W2575969892 countsByYear W25759698922018 @default.
- W2575969892 countsByYear W25759698922019 @default.
- W2575969892 countsByYear W25759698922020 @default.
- W2575969892 countsByYear W25759698922021 @default.
- W2575969892 countsByYear W25759698922022 @default.
- W2575969892 countsByYear W25759698922023 @default.
- W2575969892 crossrefType "proceedings-article" @default.
- W2575969892 hasAuthorship W2575969892A5061834795 @default.
- W2575969892 hasAuthorship W2575969892A5089227812 @default.
- W2575969892 hasConcept C119857082 @default.
- W2575969892 hasConcept C12267149 @default.
- W2575969892 hasConcept C136525101 @default.
- W2575969892 hasConcept C142724271 @default.
- W2575969892 hasConcept C153180895 @default.
- W2575969892 hasConcept C154945302 @default.
- W2575969892 hasConcept C168406668 @default.
- W2575969892 hasConcept C204787440 @default.
- W2575969892 hasConcept C2777212361 @default.
- W2575969892 hasConcept C2777826928 @default.
- W2575969892 hasConcept C41008148 @default.
- W2575969892 hasConcept C71924100 @default.
- W2575969892 hasConceptScore W2575969892C119857082 @default.
- W2575969892 hasConceptScore W2575969892C12267149 @default.
- W2575969892 hasConceptScore W2575969892C136525101 @default.
- W2575969892 hasConceptScore W2575969892C142724271 @default.
- W2575969892 hasConceptScore W2575969892C153180895 @default.
- W2575969892 hasConceptScore W2575969892C154945302 @default.
- W2575969892 hasConceptScore W2575969892C168406668 @default.
- W2575969892 hasConceptScore W2575969892C204787440 @default.
- W2575969892 hasConceptScore W2575969892C2777212361 @default.
- W2575969892 hasConceptScore W2575969892C2777826928 @default.
- W2575969892 hasConceptScore W2575969892C41008148 @default.
- W2575969892 hasConceptScore W2575969892C71924100 @default.
- W2575969892 hasLocation W25759698921 @default.
- W2575969892 hasOpenAccess W2575969892 @default.
- W2575969892 hasPrimaryLocation W25759698921 @default.
- W2575969892 hasRelatedWork W1502614025 @default.
- W2575969892 hasRelatedWork W1925241029 @default.
- W2575969892 hasRelatedWork W2187565995 @default.
- W2575969892 hasRelatedWork W2315459412 @default.
- W2575969892 hasRelatedWork W2389470892 @default.
- W2575969892 hasRelatedWork W2734991885 @default.
- W2575969892 hasRelatedWork W2945952022 @default.
- W2575969892 hasRelatedWork W3174451172 @default.
- W2575969892 hasRelatedWork W4293863368 @default.
- W2575969892 hasRelatedWork W2355869368 @default.
- W2575969892 isParatext "false" @default.
- W2575969892 isRetracted "false" @default.
- W2575969892 magId "2575969892" @default.
- W2575969892 workType "article" @default.