Matches in SemOpenAlex for { <https://semopenalex.org/work/W2576044525> ?p ?o ?g. }
- W2576044525 endingPage "drw065" @default.
- W2576044525 startingPage "drw065" @default.
- W2576044525 abstract "We present an algorithm to compute the pseudospectral abscissa for a nonlinear eigenvalue problem. The algorithm relies on global under-estimator and over-estimator functions for the eigenvalue and singular value functions involved. These global models follow from eigenvalue perturbation theory. The algorithm has three particular features. First, it converges to the globally rightmost point of the pseudospectrum, and it is immune to nonsmoothness. The global convergence assertion is under the assumption that a global lower bound is available for the second derivative of a singular value function depending on one parameter. It may not be easy to deduce such a lower bound analytically, but assigning large negative values works robustly in practice. Second, it is applicable to large-scale problems since the dominant cost per iteration stems from computing the smallest singular value and associated singular vectors, for which efficient iterative solvers can be used. Furthermore, a significant increase in computational efficiency can be obtained by subspace acceleration, that is, by restricting the domains of the linear maps associated with the matrices involved to small but suitable subspaces, and solving the resulting reduced problems. Occasional restarts of these subspaces further enhance the efficiency for large-scale problems. Finally, in contrast to existing iterative approaches based on constructing low-rank perturbations and rightmost eigenvalue computations, the algorithm relies on computing only singular values of complex matrices. Hence, the algorithm does not require solutions of nonlinear eigenvalue problems, thereby further increasing efficiency and reliability. This work is accompanied by a robust implementation of the algorithm that is publicly available." @default.
- W2576044525 created "2017-01-26" @default.
- W2576044525 creator A5008378186 @default.
- W2576044525 creator A5024885694 @default.
- W2576044525 creator A5079388991 @default.
- W2576044525 creator A5088134474 @default.
- W2576044525 date "2017-01-11" @default.
- W2576044525 modified "2023-09-27" @default.
- W2576044525 title "Computation of pseudospectral abscissa for large-scale nonlinear eigenvalue problems" @default.
- W2576044525 cites W149522324 @default.
- W2576044525 cites W1506690472 @default.
- W2576044525 cites W1551360398 @default.
- W2576044525 cites W1563813142 @default.
- W2576044525 cites W1626555967 @default.
- W2576044525 cites W1965683017 @default.
- W2576044525 cites W1970606629 @default.
- W2576044525 cites W1973828774 @default.
- W2576044525 cites W1976429547 @default.
- W2576044525 cites W1977424948 @default.
- W2576044525 cites W1978572901 @default.
- W2576044525 cites W1980431326 @default.
- W2576044525 cites W1998990712 @default.
- W2576044525 cites W1999834714 @default.
- W2576044525 cites W2004050528 @default.
- W2576044525 cites W2005027098 @default.
- W2576044525 cites W2012806940 @default.
- W2576044525 cites W2015500034 @default.
- W2576044525 cites W2018057661 @default.
- W2576044525 cites W2025001541 @default.
- W2576044525 cites W2029305533 @default.
- W2576044525 cites W2032733248 @default.
- W2576044525 cites W2037064199 @default.
- W2576044525 cites W2038516800 @default.
- W2576044525 cites W2045150863 @default.
- W2576044525 cites W2047917018 @default.
- W2576044525 cites W2054155441 @default.
- W2576044525 cites W2077638498 @default.
- W2576044525 cites W2087462091 @default.
- W2576044525 cites W2090832914 @default.
- W2576044525 cites W2130630106 @default.
- W2576044525 cites W2156291021 @default.
- W2576044525 cites W2167193748 @default.
- W2576044525 cites W2167250862 @default.
- W2576044525 cites W2178909929 @default.
- W2576044525 cites W2525143841 @default.
- W2576044525 cites W2589370651 @default.
- W2576044525 cites W3106024862 @default.
- W2576044525 doi "https://doi.org/10.1093/imanum/drw065" @default.
- W2576044525 hasPublicationYear "2017" @default.
- W2576044525 type Work @default.
- W2576044525 sameAs 2576044525 @default.
- W2576044525 citedByCount "2" @default.
- W2576044525 countsByYear W25760445252016 @default.
- W2576044525 countsByYear W25760445252017 @default.
- W2576044525 crossrefType "journal-article" @default.
- W2576044525 hasAuthorship W2576044525A5008378186 @default.
- W2576044525 hasAuthorship W2576044525A5024885694 @default.
- W2576044525 hasAuthorship W2576044525A5079388991 @default.
- W2576044525 hasAuthorship W2576044525A5088134474 @default.
- W2576044525 hasBestOaLocation W25760445252 @default.
- W2576044525 hasConcept C105795698 @default.
- W2576044525 hasConcept C109282560 @default.
- W2576044525 hasConcept C11413529 @default.
- W2576044525 hasConcept C121332964 @default.
- W2576044525 hasConcept C12362212 @default.
- W2576044525 hasConcept C126255220 @default.
- W2576044525 hasConcept C147060835 @default.
- W2576044525 hasConcept C158622935 @default.
- W2576044525 hasConcept C158693339 @default.
- W2576044525 hasConcept C159694833 @default.
- W2576044525 hasConcept C185429906 @default.
- W2576044525 hasConcept C192702615 @default.
- W2576044525 hasConcept C2524010 @default.
- W2576044525 hasConcept C28826006 @default.
- W2576044525 hasConcept C33923547 @default.
- W2576044525 hasConcept C45374587 @default.
- W2576044525 hasConcept C62520636 @default.
- W2576044525 hasConceptScore W2576044525C105795698 @default.
- W2576044525 hasConceptScore W2576044525C109282560 @default.
- W2576044525 hasConceptScore W2576044525C11413529 @default.
- W2576044525 hasConceptScore W2576044525C121332964 @default.
- W2576044525 hasConceptScore W2576044525C12362212 @default.
- W2576044525 hasConceptScore W2576044525C126255220 @default.
- W2576044525 hasConceptScore W2576044525C147060835 @default.
- W2576044525 hasConceptScore W2576044525C158622935 @default.
- W2576044525 hasConceptScore W2576044525C158693339 @default.
- W2576044525 hasConceptScore W2576044525C159694833 @default.
- W2576044525 hasConceptScore W2576044525C185429906 @default.
- W2576044525 hasConceptScore W2576044525C192702615 @default.
- W2576044525 hasConceptScore W2576044525C2524010 @default.
- W2576044525 hasConceptScore W2576044525C28826006 @default.
- W2576044525 hasConceptScore W2576044525C33923547 @default.
- W2576044525 hasConceptScore W2576044525C45374587 @default.
- W2576044525 hasConceptScore W2576044525C62520636 @default.
- W2576044525 hasLocation W25760445251 @default.
- W2576044525 hasLocation W25760445252 @default.
- W2576044525 hasLocation W25760445253 @default.
- W2576044525 hasLocation W25760445254 @default.