Matches in SemOpenAlex for { <https://semopenalex.org/work/W2576418105> ?p ?o ?g. }
- W2576418105 endingPage "186" @default.
- W2576418105 startingPage "173" @default.
- W2576418105 abstract "This paper proposes a multivariate chaotic Extreme Learning Machine (ELM) model for the prediction of the displacement of reservoir landslides. The displacement time series of the Baishuihe and Bazimen landslides in the Three Gorges Reservoir Area in China are used as examples. The results show that there are evidences of chaos in the displacement time series. The univariate chaotic ELM model and the multivariate chaotic model based on Particle Swarm Optimization and Support Vector Machine (PSO-SVM) model are also applied for the purpose of comparison. The comparisons show that the multivariate chaotic ELM model achieves higher prediction accuracy than the univariate chaotic ELM model and the multivariate chaotic PSO-SVM model." @default.
- W2576418105 created "2017-01-26" @default.
- W2576418105 creator A5009960370 @default.
- W2576418105 creator A5029630640 @default.
- W2576418105 creator A5049970336 @default.
- W2576418105 creator A5078743875 @default.
- W2576418105 date "2017-02-01" @default.
- W2576418105 modified "2023-10-02" @default.
- W2576418105 title "Landslide displacement prediction based on multivariate chaotic model and extreme learning machine" @default.
- W2576418105 cites W1965754674 @default.
- W2576418105 cites W1973281473 @default.
- W2576418105 cites W1978902606 @default.
- W2576418105 cites W1986656491 @default.
- W2576418105 cites W1990011917 @default.
- W2576418105 cites W1999154420 @default.
- W2576418105 cites W2000356602 @default.
- W2576418105 cites W2005317867 @default.
- W2576418105 cites W2009684895 @default.
- W2576418105 cites W2010832349 @default.
- W2576418105 cites W2011108511 @default.
- W2576418105 cites W2017324313 @default.
- W2576418105 cites W2031678142 @default.
- W2576418105 cites W2031950708 @default.
- W2576418105 cites W2032498924 @default.
- W2576418105 cites W2034441650 @default.
- W2576418105 cites W2036801659 @default.
- W2576418105 cites W2037072271 @default.
- W2576418105 cites W2041461910 @default.
- W2576418105 cites W2054979538 @default.
- W2576418105 cites W2055083889 @default.
- W2576418105 cites W2056386366 @default.
- W2576418105 cites W2056651346 @default.
- W2576418105 cites W2058044847 @default.
- W2576418105 cites W2061945984 @default.
- W2576418105 cites W2068216760 @default.
- W2576418105 cites W2071760479 @default.
- W2576418105 cites W2074942959 @default.
- W2576418105 cites W2085087091 @default.
- W2576418105 cites W2091881089 @default.
- W2576418105 cites W2094300701 @default.
- W2576418105 cites W2096987757 @default.
- W2576418105 cites W2103146914 @default.
- W2576418105 cites W2103902840 @default.
- W2576418105 cites W2111072639 @default.
- W2576418105 cites W2121069620 @default.
- W2576418105 cites W2121508650 @default.
- W2576418105 cites W2124428761 @default.
- W2576418105 cites W2138527687 @default.
- W2576418105 cites W2139328431 @default.
- W2576418105 cites W2152254020 @default.
- W2576418105 cites W2153547538 @default.
- W2576418105 cites W2174066569 @default.
- W2576418105 cites W2177311576 @default.
- W2576418105 cites W2227247224 @default.
- W2576418105 cites W2284304237 @default.
- W2576418105 cites W2291261846 @default.
- W2576418105 cites W2539221552 @default.
- W2576418105 cites W3114677526 @default.
- W2576418105 cites W4239510810 @default.
- W2576418105 cites W4376848575 @default.
- W2576418105 cites W2465874490 @default.
- W2576418105 doi "https://doi.org/10.1016/j.enggeo.2017.01.016" @default.
- W2576418105 hasPublicationYear "2017" @default.
- W2576418105 type Work @default.
- W2576418105 sameAs 2576418105 @default.
- W2576418105 citedByCount "188" @default.
- W2576418105 countsByYear W25764181052017 @default.
- W2576418105 countsByYear W25764181052018 @default.
- W2576418105 countsByYear W25764181052019 @default.
- W2576418105 countsByYear W25764181052020 @default.
- W2576418105 countsByYear W25764181052021 @default.
- W2576418105 countsByYear W25764181052022 @default.
- W2576418105 countsByYear W25764181052023 @default.
- W2576418105 crossrefType "journal-article" @default.
- W2576418105 hasAuthorship W2576418105A5009960370 @default.
- W2576418105 hasAuthorship W2576418105A5029630640 @default.
- W2576418105 hasAuthorship W2576418105A5049970336 @default.
- W2576418105 hasAuthorship W2576418105A5078743875 @default.
- W2576418105 hasConcept C107551265 @default.
- W2576418105 hasConcept C11413529 @default.
- W2576418105 hasConcept C119857082 @default.
- W2576418105 hasConcept C12267149 @default.
- W2576418105 hasConcept C127313418 @default.
- W2576418105 hasConcept C143724316 @default.
- W2576418105 hasConcept C151730666 @default.
- W2576418105 hasConcept C154945302 @default.
- W2576418105 hasConcept C15744967 @default.
- W2576418105 hasConcept C161584116 @default.
- W2576418105 hasConcept C186295008 @default.
- W2576418105 hasConcept C187320778 @default.
- W2576418105 hasConcept C199163554 @default.
- W2576418105 hasConcept C2777052490 @default.
- W2576418105 hasConcept C2780150128 @default.
- W2576418105 hasConcept C41008148 @default.
- W2576418105 hasConcept C50644808 @default.
- W2576418105 hasConcept C542102704 @default.
- W2576418105 hasConcept C85617194 @default.
- W2576418105 hasConceptScore W2576418105C107551265 @default.