Matches in SemOpenAlex for { <https://semopenalex.org/work/W2576754561> ?p ?o ?g. }
- W2576754561 endingPage "31" @default.
- W2576754561 startingPage "22" @default.
- W2576754561 abstract "Short text clustering is a challenging problem due to its sparseness of text representation. Here we propose a flexible Self-Taught Convolutional neural network framework for Short Text Clustering (dubbed STC^2), which can flexibly and successfully incorporate more useful semantic features and learn non-biased deep text representation in an unsupervised manner. In our framework, the original raw text features are firstly embedded into compact binary codes by using one existing unsupervised dimensionality reduction methods. Then, word embeddings are explored and fed into convolutional neural networks to learn deep feature representations, meanwhile the output units are used to fit the pre-trained binary codes in the training process. Finally, we get the optimal clusters by employing K-means to cluster the learned representations. Extensive experimental results demonstrate that the proposed framework is effective, flexible and outperform several popular clustering methods when tested on three public short text datasets." @default.
- W2576754561 created "2017-01-26" @default.
- W2576754561 creator A5034617242 @default.
- W2576754561 creator A5050899081 @default.
- W2576754561 creator A5068469832 @default.
- W2576754561 creator A5071321132 @default.
- W2576754561 creator A5071806006 @default.
- W2576754561 creator A5084860614 @default.
- W2576754561 date "2017-04-01" @default.
- W2576754561 modified "2023-10-17" @default.
- W2576754561 title "Self-Taught convolutional neural networks for short text clustering" @default.
- W2576754561 cites W1566289585 @default.
- W2576754561 cites W1832693441 @default.
- W2576754561 cites W1993691975 @default.
- W2576754561 cites W2064675550 @default.
- W2576754561 cites W2100495367 @default.
- W2576754561 cites W2120615054 @default.
- W2576754561 cites W2126337883 @default.
- W2576754561 cites W2147152072 @default.
- W2576754561 cites W2157331557 @default.
- W2576754561 cites W2169658215 @default.
- W2576754561 cites W2250539671 @default.
- W2576754561 cites W2250966211 @default.
- W2576754561 cites W2251410829 @default.
- W2576754561 cites W2265846598 @default.
- W2576754561 cites W2557744001 @default.
- W2576754561 doi "https://doi.org/10.1016/j.neunet.2016.12.008" @default.
- W2576754561 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28157556" @default.
- W2576754561 hasPublicationYear "2017" @default.
- W2576754561 type Work @default.
- W2576754561 sameAs 2576754561 @default.
- W2576754561 citedByCount "141" @default.
- W2576754561 countsByYear W25767545612017 @default.
- W2576754561 countsByYear W25767545612018 @default.
- W2576754561 countsByYear W25767545612019 @default.
- W2576754561 countsByYear W25767545612020 @default.
- W2576754561 countsByYear W25767545612021 @default.
- W2576754561 countsByYear W25767545612022 @default.
- W2576754561 countsByYear W25767545612023 @default.
- W2576754561 crossrefType "journal-article" @default.
- W2576754561 hasAuthorship W2576754561A5034617242 @default.
- W2576754561 hasAuthorship W2576754561A5050899081 @default.
- W2576754561 hasAuthorship W2576754561A5068469832 @default.
- W2576754561 hasAuthorship W2576754561A5071321132 @default.
- W2576754561 hasAuthorship W2576754561A5071806006 @default.
- W2576754561 hasAuthorship W2576754561A5084860614 @default.
- W2576754561 hasBestOaLocation W25767545612 @default.
- W2576754561 hasConcept C138885662 @default.
- W2576754561 hasConcept C153180895 @default.
- W2576754561 hasConcept C154945302 @default.
- W2576754561 hasConcept C17744445 @default.
- W2576754561 hasConcept C199539241 @default.
- W2576754561 hasConcept C2524010 @default.
- W2576754561 hasConcept C2776359362 @default.
- W2576754561 hasConcept C2776401178 @default.
- W2576754561 hasConcept C33923547 @default.
- W2576754561 hasConcept C41008148 @default.
- W2576754561 hasConcept C41895202 @default.
- W2576754561 hasConcept C48372109 @default.
- W2576754561 hasConcept C59404180 @default.
- W2576754561 hasConcept C70518039 @default.
- W2576754561 hasConcept C73555534 @default.
- W2576754561 hasConcept C8038995 @default.
- W2576754561 hasConcept C81363708 @default.
- W2576754561 hasConcept C90805587 @default.
- W2576754561 hasConcept C94375191 @default.
- W2576754561 hasConcept C94625758 @default.
- W2576754561 hasConceptScore W2576754561C138885662 @default.
- W2576754561 hasConceptScore W2576754561C153180895 @default.
- W2576754561 hasConceptScore W2576754561C154945302 @default.
- W2576754561 hasConceptScore W2576754561C17744445 @default.
- W2576754561 hasConceptScore W2576754561C199539241 @default.
- W2576754561 hasConceptScore W2576754561C2524010 @default.
- W2576754561 hasConceptScore W2576754561C2776359362 @default.
- W2576754561 hasConceptScore W2576754561C2776401178 @default.
- W2576754561 hasConceptScore W2576754561C33923547 @default.
- W2576754561 hasConceptScore W2576754561C41008148 @default.
- W2576754561 hasConceptScore W2576754561C41895202 @default.
- W2576754561 hasConceptScore W2576754561C48372109 @default.
- W2576754561 hasConceptScore W2576754561C59404180 @default.
- W2576754561 hasConceptScore W2576754561C70518039 @default.
- W2576754561 hasConceptScore W2576754561C73555534 @default.
- W2576754561 hasConceptScore W2576754561C8038995 @default.
- W2576754561 hasConceptScore W2576754561C81363708 @default.
- W2576754561 hasConceptScore W2576754561C90805587 @default.
- W2576754561 hasConceptScore W2576754561C94375191 @default.
- W2576754561 hasConceptScore W2576754561C94625758 @default.
- W2576754561 hasFunder F4320321001 @default.
- W2576754561 hasLocation W25767545611 @default.
- W2576754561 hasLocation W25767545612 @default.
- W2576754561 hasLocation W25767545613 @default.
- W2576754561 hasOpenAccess W2576754561 @default.
- W2576754561 hasPrimaryLocation W25767545611 @default.
- W2576754561 hasRelatedWork W2095834362 @default.
- W2576754561 hasRelatedWork W2518029102 @default.
- W2576754561 hasRelatedWork W2554408715 @default.
- W2576754561 hasRelatedWork W2760085659 @default.
- W2576754561 hasRelatedWork W2768413403 @default.