Matches in SemOpenAlex for { <https://semopenalex.org/work/W2577056945> ?p ?o ?g. }
- W2577056945 endingPage "681" @default.
- W2577056945 startingPage "673" @default.
- W2577056945 abstract "This paper studies the problem of object tracking in challenging scenarios by leveraging multimodal visual data. We propose a grayscale-thermal object tracking method in Bayesian filtering framework based on multitask Laplacian sparse representation. Given one bounding box, we extract a set of overlapping local patches within it, and pursue the multitask joint sparse representation for grayscale and thermal modalities. Then, the representation coefficients of the two modalities are concatenated into a vector to represent the feature of the bounding box. Moreover, the similarity between each patch pair is deployed to refine their representation coefficients in the sparse representation, which can be formulated as the Laplacian sparse representation. We also incorporate the modal reliability into the Laplacian sparse representation to achieve an adaptive fusion of different source data. Experiments on two grayscale-thermal datasets suggest that the proposed approach outperforms both grayscale and grayscale-thermal tracking approaches." @default.
- W2577056945 created "2017-01-26" @default.
- W2577056945 creator A5001107186 @default.
- W2577056945 creator A5030720334 @default.
- W2577056945 creator A5050590989 @default.
- W2577056945 creator A5058010200 @default.
- W2577056945 creator A5080798381 @default.
- W2577056945 date "2017-04-01" @default.
- W2577056945 modified "2023-10-16" @default.
- W2577056945 title "Grayscale-Thermal Object Tracking via Multitask Laplacian Sparse Representation" @default.
- W2577056945 cites W1965914109 @default.
- W2577056945 cites W1999621311 @default.
- W2577056945 cites W2007270964 @default.
- W2577056945 cites W2015148749 @default.
- W2577056945 cites W2016075127 @default.
- W2577056945 cites W2016802777 @default.
- W2577056945 cites W2017214807 @default.
- W2577056945 cites W2044986361 @default.
- W2577056945 cites W2048506041 @default.
- W2577056945 cites W2089961441 @default.
- W2577056945 cites W2091914309 @default.
- W2577056945 cites W2094274531 @default.
- W2577056945 cites W2098941887 @default.
- W2577056945 cites W2109579504 @default.
- W2577056945 cites W2120594454 @default.
- W2577056945 cites W2124857421 @default.
- W2577056945 cites W2142540304 @default.
- W2577056945 cites W2152887597 @default.
- W2577056945 cites W2154647679 @default.
- W2577056945 cites W2154889144 @default.
- W2577056945 cites W2163309385 @default.
- W2577056945 cites W2214012879 @default.
- W2577056945 cites W2293193551 @default.
- W2577056945 cites W2295160276 @default.
- W2577056945 cites W2301616110 @default.
- W2577056945 cites W2339830253 @default.
- W2577056945 cites W2527415613 @default.
- W2577056945 cites W4244393449 @default.
- W2577056945 doi "https://doi.org/10.1109/tsmc.2016.2627052" @default.
- W2577056945 hasPublicationYear "2017" @default.
- W2577056945 type Work @default.
- W2577056945 sameAs 2577056945 @default.
- W2577056945 citedByCount "64" @default.
- W2577056945 countsByYear W25770569452017 @default.
- W2577056945 countsByYear W25770569452018 @default.
- W2577056945 countsByYear W25770569452019 @default.
- W2577056945 countsByYear W25770569452020 @default.
- W2577056945 countsByYear W25770569452021 @default.
- W2577056945 countsByYear W25770569452022 @default.
- W2577056945 countsByYear W25770569452023 @default.
- W2577056945 crossrefType "journal-article" @default.
- W2577056945 hasAuthorship W2577056945A5001107186 @default.
- W2577056945 hasAuthorship W2577056945A5030720334 @default.
- W2577056945 hasAuthorship W2577056945A5050590989 @default.
- W2577056945 hasAuthorship W2577056945A5058010200 @default.
- W2577056945 hasAuthorship W2577056945A5080798381 @default.
- W2577056945 hasConcept C115961682 @default.
- W2577056945 hasConcept C124066611 @default.
- W2577056945 hasConcept C134306372 @default.
- W2577056945 hasConcept C138885662 @default.
- W2577056945 hasConcept C147037132 @default.
- W2577056945 hasConcept C153180895 @default.
- W2577056945 hasConcept C154945302 @default.
- W2577056945 hasConcept C165700671 @default.
- W2577056945 hasConcept C17744445 @default.
- W2577056945 hasConcept C199539241 @default.
- W2577056945 hasConcept C202474056 @default.
- W2577056945 hasConcept C2776359362 @default.
- W2577056945 hasConcept C2776401178 @default.
- W2577056945 hasConcept C2781238097 @default.
- W2577056945 hasConcept C31972630 @default.
- W2577056945 hasConcept C33923547 @default.
- W2577056945 hasConcept C41008148 @default.
- W2577056945 hasConcept C41895202 @default.
- W2577056945 hasConcept C52622490 @default.
- W2577056945 hasConcept C78201319 @default.
- W2577056945 hasConcept C94625758 @default.
- W2577056945 hasConceptScore W2577056945C115961682 @default.
- W2577056945 hasConceptScore W2577056945C124066611 @default.
- W2577056945 hasConceptScore W2577056945C134306372 @default.
- W2577056945 hasConceptScore W2577056945C138885662 @default.
- W2577056945 hasConceptScore W2577056945C147037132 @default.
- W2577056945 hasConceptScore W2577056945C153180895 @default.
- W2577056945 hasConceptScore W2577056945C154945302 @default.
- W2577056945 hasConceptScore W2577056945C165700671 @default.
- W2577056945 hasConceptScore W2577056945C17744445 @default.
- W2577056945 hasConceptScore W2577056945C199539241 @default.
- W2577056945 hasConceptScore W2577056945C202474056 @default.
- W2577056945 hasConceptScore W2577056945C2776359362 @default.
- W2577056945 hasConceptScore W2577056945C2776401178 @default.
- W2577056945 hasConceptScore W2577056945C2781238097 @default.
- W2577056945 hasConceptScore W2577056945C31972630 @default.
- W2577056945 hasConceptScore W2577056945C33923547 @default.
- W2577056945 hasConceptScore W2577056945C41008148 @default.
- W2577056945 hasConceptScore W2577056945C41895202 @default.
- W2577056945 hasConceptScore W2577056945C52622490 @default.
- W2577056945 hasConceptScore W2577056945C78201319 @default.
- W2577056945 hasConceptScore W2577056945C94625758 @default.