Matches in SemOpenAlex for { <https://semopenalex.org/work/W2577303772> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2577303772 abstract "A Fresh Look at Vocabulary Spurts Frederic Dandurand (frederic.dandurand@gmail.com) Department of Psychology, Universite de Montreal, 90 ave. Vincent-d'Indy Montreal, QC H2V 2S9 Canada Thomas R. Shultz (thomas.shultz@mcgill.ca) Department of Psychology and School of Computer Science, McGill University, 1205 Penfield Avenue Montreal, QC H3A 1B1 Canada Abstract There is currently rather little agreement about the existence of, and explanation for, a vocabulary spurt in children during the second year. Here we apply a Functional Data Analysis- based technique called Automatic Maxima Detection to the problem of finding vocabulary spurts in a sample of 20 children. Even with considerable smoothing of the data, children were found to exhibit multiple vocabulary spurts of varying intensity and location. These results should provide a clearer target for researchers interested in detecting and explaining these deviations from linear growth. Keywords: vocabulary spurts; functional data analysis; automatic maxima detection. Vocabulary Spurts The psychological literature on vocabulary spurts in children is in an interesting state of turmoil. The spurt is usually taken to mean a sharp increase in vocabulary acquisition in the second year of life. There are at least eight different explanations of the vocabulary spurt with rather little consensus on which is the right explanation, and there is disagreement about whether a spurt even exists in most children. Here, we apply a new statistical methodology to the problem of detecting spurts and find evidence for a surprisingly larger number of vocabulary spurts in most children. Other endogenous factors emphasize leveraging techniques, such that known words facilitate learning of new words. These leveraging methods include mutual exclusivity (Markman, Wasow, & Hanson, 2003), syntactic bootstrapping (Gleitman & Gleitman, 1992), and word segmentation (Plunkett, 1993; Walley, 1993). A third kind of explanation does not emphasize the child, but rather the statistical properties of word distributions in the child’s language environment. Assuming due to the central limit theorem that word-learning difficulty is normally distributed and that words are learned in parallel, computer simulations show that an early vocabulary spurt is mathematically inevitable (McMurray, 2007). The same result was obtained with several other distributions of word difficulty (Mitchell & McMurray, 2008). Most of these explanations have been disputed, including this last one. Under alternate assumptions that all words are equally difficult to learn and their frequencies are distributed under Zipf’s law, simulations show that word acquisition is linear rather than spurt-like (Mayor & Plunkett, 2010). In a Zipf distribution, item frequency is inversely proportional to its rank (Zipf, 1949). This distribution is characteristic of word learning and many other phenomena such as city populations (Itti & Baldi, Methods of Spurt Detection Explanations of the Vocabulary Spurt The assertion that there is a substantial and reliable vocabulary spurt during the second year has been repeated so often that most developmental psychologists readily accept it. This apparent consensus on an interesting phenomenon has led to a variety of explanations. Most of these explanations emphasize factors endogenous to the child, some based on sudden developmental changes and others based on leveraging of previous learning. Among the sudden developmental changes are realizing that things have names (Dore, Franklin, Miller, & Ramer, 1976; Goldfield & Reznick, 1990; McShane, 1979; Reznick & Goldfield, 1992), ability to categorize (Bates, Benigni, Bretherton, Camaioni, & Volterra, 1979; Gopnik & Meltzoff, 1987; Lifter & Bloom, 1989; Mervis & Bertrand, 1994; Nazzi & Bertoncini, 2003; Poulin-Dubois, Graham, & Sippola, 1995), pragmatic skill (Ninio, 1995), and hemispheric specialization (Mills, Coffey-Corina, & Neville, 1993). Four techniques have been used to assess the vocabulary spurt. The simplest is to calculate a ratio of vocabulary size to age and argue whether it is large enough to be a spurt (Schafer & Plunkett, 1998). This method is not particularly convincing as it does not assess change or rate of change. The most common approach is to specify a certain number of words that must be learned in a given time period (Goldfield & Reznick, 1990; Gopnik & Meltzoff, 1987; Lifter & Bloom, 1989; Mervis & Bertrand, 1994; Ninio, 1995; Poulin-Dubois, et al., 1995; Reznick & Goldfield, 1992). A third approach is to plot vocabulary growth over age and visually judge whether a spurt is present (Dromi, All three of these techniques use subjective and arbitrary specifications, and it is not too surprising that values are chosen in a way that guarantees that the expected spurt is found. Moreover, none of these methods distinguish a true spurt from a gradual continuous increase in words (Bloom," @default.
- W2577303772 created "2017-01-26" @default.
- W2577303772 creator A5001001660 @default.
- W2577303772 creator A5084013788 @default.
- W2577303772 date "2011-01-01" @default.
- W2577303772 modified "2023-10-14" @default.
- W2577303772 title "A Fresh Look at Vocabulary Spurts" @default.
- W2577303772 cites W147492287 @default.
- W2577303772 cites W1603304768 @default.
- W2577303772 cites W1664103832 @default.
- W2577303772 cites W1732736211 @default.
- W2577303772 cites W1966109131 @default.
- W2577303772 cites W1979467843 @default.
- W2577303772 cites W1979923139 @default.
- W2577303772 cites W1993078811 @default.
- W2577303772 cites W1996678589 @default.
- W2577303772 cites W2016973969 @default.
- W2577303772 cites W2039546655 @default.
- W2577303772 cites W2044718719 @default.
- W2577303772 cites W2057939421 @default.
- W2577303772 cites W2061748944 @default.
- W2577303772 cites W2079656678 @default.
- W2577303772 cites W2083029730 @default.
- W2577303772 cites W2098428317 @default.
- W2577303772 cites W2112366626 @default.
- W2577303772 cites W2125654120 @default.
- W2577303772 cites W2126656933 @default.
- W2577303772 cites W2148409660 @default.
- W2577303772 cites W2156126439 @default.
- W2577303772 cites W2162207320 @default.
- W2577303772 cites W2187491676 @default.
- W2577303772 cites W2228264470 @default.
- W2577303772 cites W3137136951 @default.
- W2577303772 cites W367043469 @default.
- W2577303772 cites W612716323 @default.
- W2577303772 cites W637736017 @default.
- W2577303772 hasPublicationYear "2011" @default.
- W2577303772 type Work @default.
- W2577303772 sameAs 2577303772 @default.
- W2577303772 citedByCount "2" @default.
- W2577303772 countsByYear W25773037722014 @default.
- W2577303772 countsByYear W25773037722016 @default.
- W2577303772 crossrefType "journal-article" @default.
- W2577303772 hasAuthorship W2577303772A5001001660 @default.
- W2577303772 hasAuthorship W2577303772A5084013788 @default.
- W2577303772 hasConcept C138885662 @default.
- W2577303772 hasConcept C145420912 @default.
- W2577303772 hasConcept C15744967 @default.
- W2577303772 hasConcept C180747234 @default.
- W2577303772 hasConcept C2777601683 @default.
- W2577303772 hasConcept C41008148 @default.
- W2577303772 hasConcept C41895202 @default.
- W2577303772 hasConceptScore W2577303772C138885662 @default.
- W2577303772 hasConceptScore W2577303772C145420912 @default.
- W2577303772 hasConceptScore W2577303772C15744967 @default.
- W2577303772 hasConceptScore W2577303772C180747234 @default.
- W2577303772 hasConceptScore W2577303772C2777601683 @default.
- W2577303772 hasConceptScore W2577303772C41008148 @default.
- W2577303772 hasConceptScore W2577303772C41895202 @default.
- W2577303772 hasIssue "33" @default.
- W2577303772 hasLocation W25773037721 @default.
- W2577303772 hasOpenAccess W2577303772 @default.
- W2577303772 hasPrimaryLocation W25773037721 @default.
- W2577303772 hasRelatedWork W2016746435 @default.
- W2577303772 hasRelatedWork W2038298093 @default.
- W2577303772 hasRelatedWork W2068251364 @default.
- W2577303772 hasRelatedWork W2104731861 @default.
- W2577303772 hasRelatedWork W2279229919 @default.
- W2577303772 hasRelatedWork W2295667662 @default.
- W2577303772 hasRelatedWork W2298217069 @default.
- W2577303772 hasRelatedWork W2340078640 @default.
- W2577303772 hasRelatedWork W2405335110 @default.
- W2577303772 hasRelatedWork W2418202514 @default.
- W2577303772 hasRelatedWork W2519339554 @default.
- W2577303772 hasRelatedWork W273951947 @default.
- W2577303772 hasRelatedWork W2772151117 @default.
- W2577303772 hasRelatedWork W2780239804 @default.
- W2577303772 hasRelatedWork W2891144305 @default.
- W2577303772 hasRelatedWork W3165758202 @default.
- W2577303772 hasRelatedWork W3199139428 @default.
- W2577303772 hasRelatedWork W43816581 @default.
- W2577303772 hasRelatedWork W827030004 @default.
- W2577303772 hasRelatedWork W2467079752 @default.
- W2577303772 hasVolume "33" @default.
- W2577303772 isParatext "false" @default.
- W2577303772 isRetracted "false" @default.
- W2577303772 magId "2577303772" @default.
- W2577303772 workType "article" @default.