Matches in SemOpenAlex for { <https://semopenalex.org/work/W2578602731> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W2578602731 abstract "A large number of medical examinations involve images in some way. Images can be used for diagnostics, follow-up studies and treatment planning. In this thesis mathematical methods have been developed and adapted in order to analyze medical images. Several applications for different imaging modalities have been studied and the usefulness of such methods is demonstrated.A complete system for detection and diagnosis of kidney lesions in scintigraphy images has been developed. We segment the kidneys with the use of an active shape model. The uptake of a biological molecule is then compared to the uptake in a healthy kidney and potential lesions are detected. A number of properties of the potential lesions are gathered and the lesions are classified as healthy or unhealthy with a linear classifier. We are able to correctly classify 86 % of the lesions.Ultrasound images have also been studied. In the first case for the purpose of segmenting the left heart ventricle, which can be used for computing the ejection fraction. This was done using a region based snake with anchor points at each side of the cardiac valve. The second application in ultrasound images is also of the heart but with patients that, due to heart failure, have had a mechanical pump implanted. The septum wall between the ventricles is segmented using a shortest path approach and a measure of how much the septum bulges towards either of the ventricles is obtained. By studying this measure a more objective indication is given on whether the speed of the pump is correct for a patient than by only visually study the images.In computed tomography (CT) whole-body images, several organs have been segmented using a multi-atlas approach. The fused labels are refined with a random forest classifier and a final graph cut segmentation. This method was evaluated in the VISCERAL Grand Anatomy Challenge and achieved the highest Dice score for 13 out of 20 organs. A development of this approach was done in order to achieve qualitatively better segmentations of the organs. Instead of fusing organ labels, a map of corresponding landmarks is obtained and the segmentation is given by the robust average of these with similar refinement steps as in the origin work. The segmentation results using this method is on par with or better than state-of-the-art. Segmentation of organs is important in e.g. radiotherapy planning.In another project with CT images, vertebrae have been detected and identified. This is useful in for instance surgical planning. The detection is done using convolutional neural networks. A shape model of the spine is fitted to the detections in order to correctly identify them. The task is difficult because, in general, only a limited part of the spine is visible. We are able to correctly identify 63 % of the vertebrae. (Less)" @default.
- W2578602731 created "2017-01-26" @default.
- W2578602731 creator A5004550815 @default.
- W2578602731 date "2016-01-01" @default.
- W2578602731 modified "2023-09-25" @default.
- W2578602731 title "Analysis of Medical Images : Registration, Segmentation and Classification" @default.
- W2578602731 hasPublicationYear "2016" @default.
- W2578602731 type Work @default.
- W2578602731 sameAs 2578602731 @default.
- W2578602731 citedByCount "0" @default.
- W2578602731 crossrefType "dissertation" @default.
- W2578602731 hasAuthorship W2578602731A5004550815 @default.
- W2578602731 hasConcept C115961682 @default.
- W2578602731 hasConcept C124504099 @default.
- W2578602731 hasConcept C126838900 @default.
- W2578602731 hasConcept C143753070 @default.
- W2578602731 hasConcept C153180895 @default.
- W2578602731 hasConcept C154945302 @default.
- W2578602731 hasConcept C164705383 @default.
- W2578602731 hasConcept C191178318 @default.
- W2578602731 hasConcept C2778198053 @default.
- W2578602731 hasConcept C2778921608 @default.
- W2578602731 hasConcept C31601959 @default.
- W2578602731 hasConcept C31972630 @default.
- W2578602731 hasConcept C41008148 @default.
- W2578602731 hasConcept C71924100 @default.
- W2578602731 hasConcept C78085059 @default.
- W2578602731 hasConcept C89600930 @default.
- W2578602731 hasConceptScore W2578602731C115961682 @default.
- W2578602731 hasConceptScore W2578602731C124504099 @default.
- W2578602731 hasConceptScore W2578602731C126838900 @default.
- W2578602731 hasConceptScore W2578602731C143753070 @default.
- W2578602731 hasConceptScore W2578602731C153180895 @default.
- W2578602731 hasConceptScore W2578602731C154945302 @default.
- W2578602731 hasConceptScore W2578602731C164705383 @default.
- W2578602731 hasConceptScore W2578602731C191178318 @default.
- W2578602731 hasConceptScore W2578602731C2778198053 @default.
- W2578602731 hasConceptScore W2578602731C2778921608 @default.
- W2578602731 hasConceptScore W2578602731C31601959 @default.
- W2578602731 hasConceptScore W2578602731C31972630 @default.
- W2578602731 hasConceptScore W2578602731C41008148 @default.
- W2578602731 hasConceptScore W2578602731C71924100 @default.
- W2578602731 hasConceptScore W2578602731C78085059 @default.
- W2578602731 hasConceptScore W2578602731C89600930 @default.
- W2578602731 hasLocation W25786027311 @default.
- W2578602731 hasOpenAccess W2578602731 @default.
- W2578602731 hasPrimaryLocation W25786027311 @default.
- W2578602731 hasRelatedWork W1485258424 @default.
- W2578602731 hasRelatedWork W1631247436 @default.
- W2578602731 hasRelatedWork W1890531352 @default.
- W2578602731 hasRelatedWork W2053588653 @default.
- W2578602731 hasRelatedWork W2074271088 @default.
- W2578602731 hasRelatedWork W2143791881 @default.
- W2578602731 hasRelatedWork W2171417304 @default.
- W2578602731 hasRelatedWork W2543379593 @default.
- W2578602731 hasRelatedWork W2586772007 @default.
- W2578602731 hasRelatedWork W2615727686 @default.
- W2578602731 hasRelatedWork W2770335482 @default.
- W2578602731 hasRelatedWork W2788226278 @default.
- W2578602731 hasRelatedWork W2788798484 @default.
- W2578602731 hasRelatedWork W2799591312 @default.
- W2578602731 hasRelatedWork W2802527148 @default.
- W2578602731 hasRelatedWork W2903657461 @default.
- W2578602731 hasRelatedWork W2938127741 @default.
- W2578602731 hasRelatedWork W3153491276 @default.
- W2578602731 hasRelatedWork W2182116895 @default.
- W2578602731 hasRelatedWork W2740103228 @default.
- W2578602731 isParatext "false" @default.
- W2578602731 isRetracted "false" @default.
- W2578602731 magId "2578602731" @default.
- W2578602731 workType "dissertation" @default.