Matches in SemOpenAlex for { <https://semopenalex.org/work/W2579079601> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2579079601 abstract "The research field of autonomous vehicle technology has been growing at an accelerated pace. Improved safety, fuel and commuting efficiency are the motivating technical and social factors to develop fully autonomous vehicles. Sensor technology, advanced software and intelligent control are the different modules that work in unison to achieve the desired driving result. The system architecture of autonomous vehicles is explored to establish a hierarchy with the planning and control stages. This allows us to focus on the particular topic of intelligent control for both levels of operation. In this thesis, a hierarchical model predictive control is developed for trajectory generation and tracking of on-road vehicles. The state of the art methods in planning and control are predominantly developed in the robotics domain and the additional challenges of the vehicle such as non-linear dynamics, sampling time and limited computational resources make it a challenging problem. $10$ DOF, six state model, and point mass vehicle dynamics models was evaluated to sufficiently represent the dynamics of the systems and allow for efficient operation in the controller development phase. Model predictive control (MPC) is chosen because of its capability of systematically taking into account non-linearities, future predictions, and operating constraints during the control design stage. In the hierarchical approach, at the high-level, new trajectories are computed on-line, in a receding horizon fashion, based on a simplified point-mass vehicle model in order to avoid the obstacle. The formulation of the collision avoidance constraints to render a quadratic programming (QP) problem from a non-convex optimization problem was crucial in the trajectory generation phase. The parameter values involved in the forward and read collision avoidance constraints defined the feasible driving regions. At the low-level an MPC controller computes the vehicle control inputs steering and acceleration in order to best follow the high level trajectory based on a higher fidelity non-linear vehicle model. The simulation scenarios defined cases for static obstacle avoidance, car following and special overtake manoeuvres. The effectiveness of the controllers were strongly affected by the parameter tuning of the vehicle, design constraints, and collision avoidance terms. The chosen method implemented a hierarchical controller with a higher level deliberative paradigm and lower level tracking controller to achieve the tasks with respect to highly automated driving." @default.
- W2579079601 created "2017-01-26" @default.
- W2579079601 creator A5063325940 @default.
- W2579079601 date "2016-01-01" @default.
- W2579079601 modified "2023-09-27" @default.
- W2579079601 title "Hierarchical Model Predictive Control for Trajectory Generation and Tracking in Highly Automated Vehicles" @default.
- W2579079601 hasPublicationYear "2016" @default.
- W2579079601 type Work @default.
- W2579079601 sameAs 2579079601 @default.
- W2579079601 citedByCount "0" @default.
- W2579079601 crossrefType "journal-article" @default.
- W2579079601 hasAuthorship W2579079601A5063325940 @default.
- W2579079601 hasConcept C113168747 @default.
- W2579079601 hasConcept C121332964 @default.
- W2579079601 hasConcept C126255220 @default.
- W2579079601 hasConcept C127413603 @default.
- W2579079601 hasConcept C1276947 @default.
- W2579079601 hasConcept C133731056 @default.
- W2579079601 hasConcept C13662910 @default.
- W2579079601 hasConcept C154945302 @default.
- W2579079601 hasConcept C171146098 @default.
- W2579079601 hasConcept C172205157 @default.
- W2579079601 hasConcept C19966478 @default.
- W2579079601 hasConcept C203479927 @default.
- W2579079601 hasConcept C2775924081 @default.
- W2579079601 hasConcept C33923547 @default.
- W2579079601 hasConcept C34413123 @default.
- W2579079601 hasConcept C41008148 @default.
- W2579079601 hasConcept C47446073 @default.
- W2579079601 hasConcept C6557445 @default.
- W2579079601 hasConcept C6683253 @default.
- W2579079601 hasConcept C79487989 @default.
- W2579079601 hasConcept C81845259 @default.
- W2579079601 hasConcept C86803240 @default.
- W2579079601 hasConcept C90509273 @default.
- W2579079601 hasConcept C91575142 @default.
- W2579079601 hasConceptScore W2579079601C113168747 @default.
- W2579079601 hasConceptScore W2579079601C121332964 @default.
- W2579079601 hasConceptScore W2579079601C126255220 @default.
- W2579079601 hasConceptScore W2579079601C127413603 @default.
- W2579079601 hasConceptScore W2579079601C1276947 @default.
- W2579079601 hasConceptScore W2579079601C133731056 @default.
- W2579079601 hasConceptScore W2579079601C13662910 @default.
- W2579079601 hasConceptScore W2579079601C154945302 @default.
- W2579079601 hasConceptScore W2579079601C171146098 @default.
- W2579079601 hasConceptScore W2579079601C172205157 @default.
- W2579079601 hasConceptScore W2579079601C19966478 @default.
- W2579079601 hasConceptScore W2579079601C203479927 @default.
- W2579079601 hasConceptScore W2579079601C2775924081 @default.
- W2579079601 hasConceptScore W2579079601C33923547 @default.
- W2579079601 hasConceptScore W2579079601C34413123 @default.
- W2579079601 hasConceptScore W2579079601C41008148 @default.
- W2579079601 hasConceptScore W2579079601C47446073 @default.
- W2579079601 hasConceptScore W2579079601C6557445 @default.
- W2579079601 hasConceptScore W2579079601C6683253 @default.
- W2579079601 hasConceptScore W2579079601C79487989 @default.
- W2579079601 hasConceptScore W2579079601C81845259 @default.
- W2579079601 hasConceptScore W2579079601C86803240 @default.
- W2579079601 hasConceptScore W2579079601C90509273 @default.
- W2579079601 hasConceptScore W2579079601C91575142 @default.
- W2579079601 hasLocation W25790796011 @default.
- W2579079601 hasOpenAccess W2579079601 @default.
- W2579079601 hasPrimaryLocation W25790796011 @default.
- W2579079601 hasRelatedWork W1030728038 @default.
- W2579079601 hasRelatedWork W1808008750 @default.
- W2579079601 hasRelatedWork W1989507862 @default.
- W2579079601 hasRelatedWork W2142127805 @default.
- W2579079601 hasRelatedWork W2212889974 @default.
- W2579079601 hasRelatedWork W2407526033 @default.
- W2579079601 hasRelatedWork W2606978426 @default.
- W2579079601 hasRelatedWork W2766368762 @default.
- W2579079601 hasRelatedWork W2802802435 @default.
- W2579079601 hasRelatedWork W2896794071 @default.
- W2579079601 hasRelatedWork W2899674859 @default.
- W2579079601 hasRelatedWork W2908482268 @default.
- W2579079601 hasRelatedWork W2972863667 @default.
- W2579079601 hasRelatedWork W2974841718 @default.
- W2579079601 hasRelatedWork W2988105160 @default.
- W2579079601 hasRelatedWork W3012528497 @default.
- W2579079601 hasRelatedWork W3039118942 @default.
- W2579079601 hasRelatedWork W3112585106 @default.
- W2579079601 hasRelatedWork W3128479020 @default.
- W2579079601 hasRelatedWork W3209751597 @default.
- W2579079601 isParatext "false" @default.
- W2579079601 isRetracted "false" @default.
- W2579079601 magId "2579079601" @default.
- W2579079601 workType "article" @default.