Matches in SemOpenAlex for { <https://semopenalex.org/work/W2579466012> ?p ?o ?g. }
- W2579466012 endingPage "126" @default.
- W2579466012 startingPage "111" @default.
- W2579466012 abstract "Southwestern France is one of the European regions with higher frequency of hail and substantial losses. The Association Nationale d'Etude et de Lutte contre les Fleáux Atmosphériques (ANELFA) maintains a hailpad network there in continuous operation, creating an extensive database for the study of hail. We aimed to create a new forecast tool to improve hailfall detection and determine its spatiotemporal distribution in the region. Using a database of 92 hail days between 2001 and 2010, we obtained vertical profiles of temperature, dew point temperature, and relative humidity from WRF model simulation. After validating these by comparison with radiosonde profiles from Bordeaux at 1200 UTC, 31 stability indexes were obtained for a point representative of the entire study area. These indexes were introduced in a binary logistic regression model, which selected the most accurate ones for detecting hail days in the region, namely, the Showalter index, dew point temperature at 850 hPa, and TQ index. A logistic equation to distinguish between hail and hail-free days was constructed by combining these indexes. Results show a probability of detection (POD) of 87%, false alarm ratio (FAR) of 16.7%, and a Heidke Skill Score (HSS) of 0.696. The logistic equation was then applied to the entire study zone, and the results were introduced in a cluster analysis. Four clusters of hail days were obtained according to the spatial patterns of atmospheric thermodynamic conditions and probability of hail. The average distribution of hail for each cluster shows a strong similarity with the distribution of impacted hailpads from the ANELFA network. The average synoptic environment, monthly distribution and hail characteristics at the surface were also analyzed for each cluster. Cluster 1 (August) was the least frequent, with small and weak hailfalls. Cluster 2 (June and July) and 3 (May and September) had the most intense hail events, while cluster 3 and 4 (May) had the most extensive areas affected. The new forecast tool shows satisfactory results and complements other studies in the same region, and it can be a useful tool for operational forecasters in predicting hail days and determining the spatial distribution of hailfalls." @default.
- W2579466012 created "2017-01-26" @default.
- W2579466012 creator A5015965018 @default.
- W2579466012 creator A5024106410 @default.
- W2579466012 creator A5037767390 @default.
- W2579466012 creator A5073797745 @default.
- W2579466012 creator A5091688416 @default.
- W2579466012 date "2017-06-01" @default.
- W2579466012 modified "2023-10-15" @default.
- W2579466012 title "Spatial patterns of thermodynamic conditions of hailstorms in southwestern France" @default.
- W2579466012 cites W1970343002 @default.
- W2579466012 cites W1973170412 @default.
- W2579466012 cites W1974406385 @default.
- W2579466012 cites W1981187973 @default.
- W2579466012 cites W1982676966 @default.
- W2579466012 cites W1984284665 @default.
- W2579466012 cites W1987015061 @default.
- W2579466012 cites W1992955350 @default.
- W2579466012 cites W1998419590 @default.
- W2579466012 cites W1998940480 @default.
- W2579466012 cites W1999846461 @default.
- W2579466012 cites W2027907803 @default.
- W2579466012 cites W2033676772 @default.
- W2579466012 cites W2038522157 @default.
- W2579466012 cites W2039921487 @default.
- W2579466012 cites W2049364730 @default.
- W2579466012 cites W2060029736 @default.
- W2579466012 cites W2070688354 @default.
- W2579466012 cites W2075129410 @default.
- W2579466012 cites W2076962644 @default.
- W2579466012 cites W2077822207 @default.
- W2579466012 cites W2079246256 @default.
- W2579466012 cites W2079665242 @default.
- W2579466012 cites W2088818149 @default.
- W2579466012 cites W2091101078 @default.
- W2579466012 cites W2097580371 @default.
- W2579466012 cites W2104718470 @default.
- W2579466012 cites W2110623054 @default.
- W2579466012 cites W2112823219 @default.
- W2579466012 cites W2120786239 @default.
- W2579466012 cites W2125461339 @default.
- W2579466012 cites W2134703408 @default.
- W2579466012 cites W2142794782 @default.
- W2579466012 cites W2173944793 @default.
- W2579466012 cites W2174499327 @default.
- W2579466012 cites W2180723759 @default.
- W2579466012 cites W2181178188 @default.
- W2579466012 cites W2562482716 @default.
- W2579466012 cites W2888367769 @default.
- W2579466012 cites W2888417218 @default.
- W2579466012 cites W875569023 @default.
- W2579466012 doi "https://doi.org/10.1016/j.atmosres.2017.01.011" @default.
- W2579466012 hasPublicationYear "2017" @default.
- W2579466012 type Work @default.
- W2579466012 sameAs 2579466012 @default.
- W2579466012 citedByCount "15" @default.
- W2579466012 countsByYear W25794660122017 @default.
- W2579466012 countsByYear W25794660122018 @default.
- W2579466012 countsByYear W25794660122019 @default.
- W2579466012 countsByYear W25794660122020 @default.
- W2579466012 countsByYear W25794660122021 @default.
- W2579466012 countsByYear W25794660122022 @default.
- W2579466012 crossrefType "journal-article" @default.
- W2579466012 hasAuthorship W2579466012A5015965018 @default.
- W2579466012 hasAuthorship W2579466012A5024106410 @default.
- W2579466012 hasAuthorship W2579466012A5037767390 @default.
- W2579466012 hasAuthorship W2579466012A5073797745 @default.
- W2579466012 hasAuthorship W2579466012A5091688416 @default.
- W2579466012 hasConcept C105795698 @default.
- W2579466012 hasConcept C11999413 @default.
- W2579466012 hasConcept C133204551 @default.
- W2579466012 hasConcept C151956035 @default.
- W2579466012 hasConcept C153294291 @default.
- W2579466012 hasConcept C158960510 @default.
- W2579466012 hasConcept C161067210 @default.
- W2579466012 hasConcept C164866538 @default.
- W2579466012 hasConcept C199360897 @default.
- W2579466012 hasConcept C205649164 @default.
- W2579466012 hasConcept C2777016058 @default.
- W2579466012 hasConcept C33923547 @default.
- W2579466012 hasConcept C39432304 @default.
- W2579466012 hasConcept C41008148 @default.
- W2579466012 hasConcept C69332959 @default.
- W2579466012 hasConcept C82210777 @default.
- W2579466012 hasConcept C89298926 @default.
- W2579466012 hasConceptScore W2579466012C105795698 @default.
- W2579466012 hasConceptScore W2579466012C11999413 @default.
- W2579466012 hasConceptScore W2579466012C133204551 @default.
- W2579466012 hasConceptScore W2579466012C151956035 @default.
- W2579466012 hasConceptScore W2579466012C153294291 @default.
- W2579466012 hasConceptScore W2579466012C158960510 @default.
- W2579466012 hasConceptScore W2579466012C161067210 @default.
- W2579466012 hasConceptScore W2579466012C164866538 @default.
- W2579466012 hasConceptScore W2579466012C199360897 @default.
- W2579466012 hasConceptScore W2579466012C205649164 @default.
- W2579466012 hasConceptScore W2579466012C2777016058 @default.
- W2579466012 hasConceptScore W2579466012C33923547 @default.
- W2579466012 hasConceptScore W2579466012C39432304 @default.