Matches in SemOpenAlex for { <https://semopenalex.org/work/W2579617530> ?p ?o ?g. }
- W2579617530 endingPage "124" @default.
- W2579617530 startingPage "115" @default.
- W2579617530 abstract "Machine learning analysis of neuroimaging data can accurately predict chronological age in healthy people. Deviations from healthy brain ageing have been associated with cognitive impairment and disease. Here we sought to further establish the credentials of 'brain-predicted age' as a biomarker of individual differences in the brain ageing process, using a predictive modelling approach based on deep learning, and specifically convolutional neural networks (CNN), and applied to both pre-processed and raw T1-weighted MRI data. Firstly, we aimed to demonstrate the accuracy of CNN brain-predicted age using a large dataset of healthy adults (N = 2001). Next, we sought to establish the heritability of brain-predicted age using a sample of monozygotic and dizygotic female twins (N = 62). Thirdly, we examined the test-retest and multi-centre reliability of brain-predicted age using two samples (within-scanner N = 20; between-scanner N = 11). CNN brain-predicted ages were generated and compared to a Gaussian Process Regression (GPR) approach, on all datasets. Input data were grey matter (GM) or white matter (WM) volumetric maps generated by Statistical Parametric Mapping (SPM) or raw data. CNN accurately predicted chronological age using GM (correlation between brain-predicted age and chronological age r = 0.96, mean absolute error [MAE] = 4.16 years) and raw (r = 0.94, MAE = 4.65 years) data. This was comparable to GPR brain-predicted age using GM data (r = 0.95, MAE = 4.66 years). Brain-predicted age was a heritable phenotype for all models and input data (h2 ≥ 0.5). Brain-predicted age showed high test-retest reliability (intraclass correlation coefficient [ICC] = 0.90-0.99). Multi-centre reliability was more variable within high ICCs for GM (0.83-0.96) and poor-moderate levels for WM and raw data (0.51-0.77). Brain-predicted age represents an accurate, highly reliable and genetically-influenced phenotype, that has potential to be used as a biomarker of brain ageing. Moreover, age predictions can be accurately generated on raw T1-MRI data, substantially reducing computation time for novel data, bringing the process closer to giving real-time information on brain health in clinical settings." @default.
- W2579617530 created "2017-01-26" @default.
- W2579617530 creator A5002163035 @default.
- W2579617530 creator A5003288277 @default.
- W2579617530 creator A5009232210 @default.
- W2579617530 creator A5010581004 @default.
- W2579617530 creator A5021094235 @default.
- W2579617530 creator A5068172953 @default.
- W2579617530 creator A5068957160 @default.
- W2579617530 date "2017-12-01" @default.
- W2579617530 modified "2023-10-17" @default.
- W2579617530 title "Predicting brain age with deep learning from raw imaging data results in a reliable and heritable biomarker" @default.
- W2579617530 cites W1522580235 @default.
- W2579617530 cites W1536144061 @default.
- W2579617530 cites W1970928383 @default.
- W2579617530 cites W1972498024 @default.
- W2579617530 cites W1979369962 @default.
- W2579617530 cites W1983364832 @default.
- W2579617530 cites W1984020445 @default.
- W2579617530 cites W1984994164 @default.
- W2579617530 cites W2004223188 @default.
- W2579617530 cites W2008152557 @default.
- W2579617530 cites W2040077351 @default.
- W2579617530 cites W2040762325 @default.
- W2579617530 cites W2042734169 @default.
- W2579617530 cites W2051613387 @default.
- W2579617530 cites W2063404606 @default.
- W2579617530 cites W2069270259 @default.
- W2579617530 cites W2070683563 @default.
- W2579617530 cites W2074895886 @default.
- W2579617530 cites W2080053972 @default.
- W2579617530 cites W2084122339 @default.
- W2579617530 cites W2085037176 @default.
- W2579617530 cites W2092098886 @default.
- W2579617530 cites W2093092963 @default.
- W2579617530 cites W2098405376 @default.
- W2579617530 cites W2099869863 @default.
- W2579617530 cites W2104303483 @default.
- W2579617530 cites W2108103428 @default.
- W2579617530 cites W2111637831 @default.
- W2579617530 cites W2112796928 @default.
- W2579617530 cites W2113127248 @default.
- W2579617530 cites W2119947818 @default.
- W2579617530 cites W2136019660 @default.
- W2579617530 cites W2137229374 @default.
- W2579617530 cites W2141403362 @default.
- W2579617530 cites W2142635246 @default.
- W2579617530 cites W2143742215 @default.
- W2579617530 cites W2148726987 @default.
- W2579617530 cites W2149376688 @default.
- W2579617530 cites W2154809365 @default.
- W2579617530 cites W2155298532 @default.
- W2579617530 cites W2156029392 @default.
- W2579617530 cites W2167579130 @default.
- W2579617530 cites W2168985433 @default.
- W2579617530 cites W2189317234 @default.
- W2579617530 cites W2255371896 @default.
- W2579617530 cites W2283409404 @default.
- W2579617530 cites W2284198383 @default.
- W2579617530 cites W2301358467 @default.
- W2579617530 cites W2314174151 @default.
- W2579617530 cites W2335229748 @default.
- W2579617530 cites W2347013431 @default.
- W2579617530 cites W2604939291 @default.
- W2579617530 cites W2606346834 @default.
- W2579617530 cites W4205947740 @default.
- W2579617530 cites W4210770237 @default.
- W2579617530 doi "https://doi.org/10.1016/j.neuroimage.2017.07.059" @default.
- W2579617530 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28765056" @default.
- W2579617530 hasPublicationYear "2017" @default.
- W2579617530 type Work @default.
- W2579617530 sameAs 2579617530 @default.
- W2579617530 citedByCount "588" @default.
- W2579617530 countsByYear W25796175302017 @default.
- W2579617530 countsByYear W25796175302018 @default.
- W2579617530 countsByYear W25796175302019 @default.
- W2579617530 countsByYear W25796175302020 @default.
- W2579617530 countsByYear W25796175302021 @default.
- W2579617530 countsByYear W25796175302022 @default.
- W2579617530 countsByYear W25796175302023 @default.
- W2579617530 crossrefType "journal-article" @default.
- W2579617530 hasAuthorship W2579617530A5002163035 @default.
- W2579617530 hasAuthorship W2579617530A5003288277 @default.
- W2579617530 hasAuthorship W2579617530A5009232210 @default.
- W2579617530 hasAuthorship W2579617530A5010581004 @default.
- W2579617530 hasAuthorship W2579617530A5021094235 @default.
- W2579617530 hasAuthorship W2579617530A5068172953 @default.
- W2579617530 hasAuthorship W2579617530A5068957160 @default.
- W2579617530 hasBestOaLocation W25796175302 @default.
- W2579617530 hasConcept C108583219 @default.
- W2579617530 hasConcept C117220453 @default.
- W2579617530 hasConcept C126838900 @default.
- W2579617530 hasConcept C143409427 @default.
- W2579617530 hasConcept C153180895 @default.
- W2579617530 hasConcept C154945302 @default.
- W2579617530 hasConcept C15744967 @default.
- W2579617530 hasConcept C169760540 @default.
- W2579617530 hasConcept C2524010 @default.