Matches in SemOpenAlex for { <https://semopenalex.org/work/W2579669570> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2579669570 endingPage "1279" @default.
- W2579669570 startingPage "1274" @default.
- W2579669570 abstract "A Bayesian model of navigation in squirrels Anna S. Waisman (annawais@uw.edu) Institute for Learning and Brain Sciences, Portage Bay Building, Room 450 Seattle, WA 98195 USA Christopher G. Lucas (cglucas@gmail.com) Department of Educational Psychology, Baker Hall 342c Pittsburgh, PA 15213 USA Thomas L. Griffiths (tom_griffiths@berkeley.edu) Lucia F. Jacobs (jacobs@berkeley.edu) Department of Educational Psychology, 3210 Tolman Hall #1650 Berkeley, CA 94720 USA Abstract Fox squirrels have an impressive ability to remember the location of stored food. In doing so, they combine information from landmarks of different types. We define a Bayesian model that indicates how an ideal observer would optimally integrate landmark cues, and fit this model to the decisions made by squirrels in a spatial memory task. The resulting model provides a unifying framework for characterizing different strategies to cue integration, and a tool for investigating the circumstances under which particular cues are used. We show that the best fitting models changed depending on the season at testing and the details of the task. These analyses support previous claims that squirrels adopt flexible strategies in landmark use. Keywords: spatial cognition; Bayesian modeling; spatial memory; animal cognition; navigation Introduction Animals of many kinds display remarkable skill at spatial navigation, and formal models of how animals navigate have many potential uses. For example, one can use them to develop robots capable of autonomous movement (Thrun, 2005) and to aid in designing new animal conservation principles (Fevre, Bronsvoort, Hamilton & Cleaveland, 2006; Simons, 2004). In this paper, we analyze the problem of identifying a spatial location from memory as a kind of Bayesian inference. This approach provides a way to quantify degrees of belief and uncertainty, and thus provides a natural framework in which to develop an “ideal observer” model. In cases where multiple kinds of landmarks are available, the Bayesian approach allows us to take into account the perceived reliabilities of each landmark or landmark type. This information can be used to identify the location most consistent with the animal’s memory. Formalizing spatial memory in these terms gives us a tool for identifying which types of landmarks animals use in navigation, what factors influence the use of these landmarks, and what kinds of strategies animals are using based on how they use those landmarks in combination. Birds and other animals that are either nectar-feeding or store food have excellent spatial memory abilities due to natural selection pressures, and have often been used in spatial memory experiments. Traditionally, such animals have been described as using landmarks in a hierarchical fashion by which the animal works its way down its preference hierarchy of landmark types until it finds the rewarded location (Brodbeck, 1994; Clayton & Krebs, 1994; Herz, Zanette & Sherry 1994). Bats, hummingbirds, and squirrels have shown such preference hierarchies (Healy & Hurly, 1998; Jacobs & Shiflett, 1999; Thiele & Winter, 2005; Vlasak, 2006a). This traditional hierarchical model has recently been challenged by converging evidence in favor of the plasticity of landmark use in both mammals and birds (Pigeons: Legge, Spetch & Batty, 2009; Chickadees: LaDage, Roth, Fox & Pravosudov, 2009; Flying Squirrel: Gibbs, Lea & Jacobs, 2007; Fox Squirrel: Waisman & Jacobs, 2008). We were interested in exploring in more detail how different combinations of landmark types trade off in guiding search behavior and whether animals might be using Bayesian inference to determine their search strategy. This would explain the flexibility in their search strategies, and predict their strategies in a wide range of novel situations. The plan of the paper is as follows. In the first section, we briefly explain the general structure of a Bayesian model of landmark use. In the second section, we describe a series of cue combination experiments with squirrels and the specific model that we used to characterize their behavior. In the third section, we demonstrate how the model can be used to examine factors that influence the use of landmarks. The final section concludes the paper. A Bayesian analysis of cue combination in squirrel spatial navigation To construct a Bayesian model of squirrel spatial navigation we must first define the problem of squirrel spatial navigation in Bayesian terms. For simplicity, the model presented here will focus on the navigation problem encountered by a single species – the fox squirrel. A squirrel must rely on environmental landmarks and its memory of those landmarks when searching for food. Environments change and a squirrel’s memory has finite precision. This leads to a navigational problem for which the ideal solution" @default.
- W2579669570 created "2017-01-26" @default.
- W2579669570 creator A5006535533 @default.
- W2579669570 creator A5031463408 @default.
- W2579669570 creator A5077079119 @default.
- W2579669570 creator A5088771955 @default.
- W2579669570 date "2011-01-01" @default.
- W2579669570 modified "2023-09-28" @default.
- W2579669570 title "A Bayesian model of navigation in squirrels" @default.
- W2579669570 cites W1968388476 @default.
- W2579669570 cites W1978457920 @default.
- W2579669570 cites W1988722145 @default.
- W2579669570 cites W2003036584 @default.
- W2579669570 cites W2007661472 @default.
- W2579669570 cites W2010006023 @default.
- W2579669570 cites W2010242075 @default.
- W2579669570 cites W2036478242 @default.
- W2579669570 cites W2042906392 @default.
- W2579669570 cites W2057373261 @default.
- W2579669570 cites W2062594761 @default.
- W2579669570 cites W2108369179 @default.
- W2579669570 cites W2118845307 @default.
- W2579669570 cites W2135273412 @default.
- W2579669570 cites W2161856713 @default.
- W2579669570 cites W2184108506 @default.
- W2579669570 cites W2336416123 @default.
- W2579669570 hasPublicationYear "2011" @default.
- W2579669570 type Work @default.
- W2579669570 sameAs 2579669570 @default.
- W2579669570 citedByCount "0" @default.
- W2579669570 crossrefType "journal-article" @default.
- W2579669570 hasAuthorship W2579669570A5006535533 @default.
- W2579669570 hasAuthorship W2579669570A5031463408 @default.
- W2579669570 hasAuthorship W2579669570A5077079119 @default.
- W2579669570 hasAuthorship W2579669570A5088771955 @default.
- W2579669570 hasConcept C107673813 @default.
- W2579669570 hasConcept C119857082 @default.
- W2579669570 hasConcept C154945302 @default.
- W2579669570 hasConcept C15744967 @default.
- W2579669570 hasConcept C160234255 @default.
- W2579669570 hasConcept C169760540 @default.
- W2579669570 hasConcept C169900460 @default.
- W2579669570 hasConcept C170494330 @default.
- W2579669570 hasConcept C188147891 @default.
- W2579669570 hasConcept C21963081 @default.
- W2579669570 hasConcept C2777371692 @default.
- W2579669570 hasConcept C2780297707 @default.
- W2579669570 hasConcept C2988419192 @default.
- W2579669570 hasConcept C41008148 @default.
- W2579669570 hasConcept C43729271 @default.
- W2579669570 hasConcept C86803240 @default.
- W2579669570 hasConcept C90856448 @default.
- W2579669570 hasConceptScore W2579669570C107673813 @default.
- W2579669570 hasConceptScore W2579669570C119857082 @default.
- W2579669570 hasConceptScore W2579669570C154945302 @default.
- W2579669570 hasConceptScore W2579669570C15744967 @default.
- W2579669570 hasConceptScore W2579669570C160234255 @default.
- W2579669570 hasConceptScore W2579669570C169760540 @default.
- W2579669570 hasConceptScore W2579669570C169900460 @default.
- W2579669570 hasConceptScore W2579669570C170494330 @default.
- W2579669570 hasConceptScore W2579669570C188147891 @default.
- W2579669570 hasConceptScore W2579669570C21963081 @default.
- W2579669570 hasConceptScore W2579669570C2777371692 @default.
- W2579669570 hasConceptScore W2579669570C2780297707 @default.
- W2579669570 hasConceptScore W2579669570C2988419192 @default.
- W2579669570 hasConceptScore W2579669570C41008148 @default.
- W2579669570 hasConceptScore W2579669570C43729271 @default.
- W2579669570 hasConceptScore W2579669570C86803240 @default.
- W2579669570 hasConceptScore W2579669570C90856448 @default.
- W2579669570 hasIssue "33" @default.
- W2579669570 hasLocation W25796695701 @default.
- W2579669570 hasOpenAccess W2579669570 @default.
- W2579669570 hasPrimaryLocation W25796695701 @default.
- W2579669570 hasRelatedWork W161081924 @default.
- W2579669570 hasRelatedWork W2602048431 @default.
- W2579669570 hasRelatedWork W2985695769 @default.
- W2579669570 hasRelatedWork W3047962239 @default.
- W2579669570 hasRelatedWork W3081521011 @default.
- W2579669570 hasRelatedWork W3147909940 @default.
- W2579669570 hasVolume "33" @default.
- W2579669570 isParatext "false" @default.
- W2579669570 isRetracted "false" @default.
- W2579669570 magId "2579669570" @default.
- W2579669570 workType "article" @default.