Matches in SemOpenAlex for { <https://semopenalex.org/work/W2580032446> ?p ?o ?g. }
- W2580032446 endingPage "1634" @default.
- W2580032446 startingPage "1617" @default.
- W2580032446 abstract "Abstract Forecasting of extreme precipitation events at a regional scale is of high importance due to their severe impacts on society. The impacts are stronger in urban regions due to high flood potential as well high population density leading to high vulnerability. Although significant scientific improvements took place in the global models for weather forecasting, they are still not adequate at a regional scale (e.g., for an urban region) with high false alarms and low detection. There has been a need to improve the weather forecast skill at a local scale with probabilistic outcome. Here we develop a methodology with quantile regression, where the reliably simulated variables from Global Forecast System are used as predictors and different quantiles of rainfall are generated corresponding to that set of predictors. We apply this method to a flood‐prone coastal city of India, Mumbai, which has experienced severe floods in recent years. We find significant improvements in the forecast with high detection and skill scores. We apply the methodology to 10 ensemble members of Global Ensemble Forecast System and find a reduction in ensemble uncertainty of precipitation across realizations with respect to that of original precipitation forecasts. We validate our model for the monsoon season of 2006 and 2007, which are independent of the training/calibration data set used in the study. We find promising results and emphasize to implement such data‐driven methods for a better probabilistic forecast at an urban scale primarily for an early flood warning." @default.
- W2580032446 created "2017-02-03" @default.
- W2580032446 creator A5001613888 @default.
- W2580032446 creator A5044691314 @default.
- W2580032446 creator A5090492425 @default.
- W2580032446 date "2017-02-10" @default.
- W2580032446 modified "2023-09-29" @default.
- W2580032446 title "Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile‐based probabilistic forecasts" @default.
- W2580032446 cites W1517237849 @default.
- W2580032446 cites W1545465591 @default.
- W2580032446 cites W1599643498 @default.
- W2580032446 cites W1863615480 @default.
- W2580032446 cites W1965401677 @default.
- W2580032446 cites W1966043936 @default.
- W2580032446 cites W1973039273 @default.
- W2580032446 cites W1976255336 @default.
- W2580032446 cites W1978815659 @default.
- W2580032446 cites W1984113680 @default.
- W2580032446 cites W1985854434 @default.
- W2580032446 cites W1999697113 @default.
- W2580032446 cites W2002415948 @default.
- W2580032446 cites W2002486217 @default.
- W2580032446 cites W2008600497 @default.
- W2580032446 cites W2014849749 @default.
- W2580032446 cites W2018041161 @default.
- W2580032446 cites W2023025343 @default.
- W2580032446 cites W2029996740 @default.
- W2580032446 cites W2031123958 @default.
- W2580032446 cites W2036501130 @default.
- W2580032446 cites W2038774500 @default.
- W2580032446 cites W2044501118 @default.
- W2580032446 cites W2054662538 @default.
- W2580032446 cites W2055570283 @default.
- W2580032446 cites W2057924774 @default.
- W2580032446 cites W2061888374 @default.
- W2580032446 cites W2087836112 @default.
- W2580032446 cites W2091675765 @default.
- W2580032446 cites W2096904991 @default.
- W2580032446 cites W2097224090 @default.
- W2580032446 cites W2101077148 @default.
- W2580032446 cites W2114701864 @default.
- W2580032446 cites W2117376955 @default.
- W2580032446 cites W2120069064 @default.
- W2580032446 cites W2121745948 @default.
- W2580032446 cites W2122997902 @default.
- W2580032446 cites W2123214111 @default.
- W2580032446 cites W2124395162 @default.
- W2580032446 cites W2146864426 @default.
- W2580032446 cites W2148913675 @default.
- W2580032446 cites W2151157283 @default.
- W2580032446 cites W2153379386 @default.
- W2580032446 cites W2154957597 @default.
- W2580032446 cites W2160342298 @default.
- W2580032446 cites W2172191993 @default.
- W2580032446 cites W2172504610 @default.
- W2580032446 cites W2173734243 @default.
- W2580032446 cites W2174601942 @default.
- W2580032446 cites W2174836573 @default.
- W2580032446 cites W2178242555 @default.
- W2580032446 cites W2180520229 @default.
- W2580032446 cites W218177352 @default.
- W2580032446 cites W2232115943 @default.
- W2580032446 cites W4241653265 @default.
- W2580032446 cites W4256128207 @default.
- W2580032446 cites W4292023222 @default.
- W2580032446 doi "https://doi.org/10.1002/2016jd025489" @default.
- W2580032446 hasPublicationYear "2017" @default.
- W2580032446 type Work @default.
- W2580032446 sameAs 2580032446 @default.
- W2580032446 citedByCount "16" @default.
- W2580032446 countsByYear W25800324462018 @default.
- W2580032446 countsByYear W25800324462019 @default.
- W2580032446 countsByYear W25800324462020 @default.
- W2580032446 countsByYear W25800324462021 @default.
- W2580032446 countsByYear W25800324462022 @default.
- W2580032446 countsByYear W25800324462023 @default.
- W2580032446 crossrefType "journal-article" @default.
- W2580032446 hasAuthorship W2580032446A5001613888 @default.
- W2580032446 hasAuthorship W2580032446A5044691314 @default.
- W2580032446 hasAuthorship W2580032446A5090492425 @default.
- W2580032446 hasConcept C105795698 @default.
- W2580032446 hasConcept C107054158 @default.
- W2580032446 hasConcept C118671147 @default.
- W2580032446 hasConcept C127313418 @default.
- W2580032446 hasConcept C140178040 @default.
- W2580032446 hasConcept C149782125 @default.
- W2580032446 hasConcept C153294291 @default.
- W2580032446 hasConcept C166957645 @default.
- W2580032446 hasConcept C170061395 @default.
- W2580032446 hasConcept C205649164 @default.
- W2580032446 hasConcept C2778755073 @default.
- W2580032446 hasConcept C29825287 @default.
- W2580032446 hasConcept C33923547 @default.
- W2580032446 hasConcept C38652104 @default.
- W2580032446 hasConcept C39432304 @default.
- W2580032446 hasConcept C41008148 @default.
- W2580032446 hasConcept C41156917 @default.
- W2580032446 hasConcept C49204034 @default.