Matches in SemOpenAlex for { <https://semopenalex.org/work/W2580187722> ?p ?o ?g. }
- W2580187722 abstract "Thanks to Next Generation Sequencing technologies, unlabelled data is now generated easily, while the annotation process remains expensive. Semi-supervised learning represents a cost-effective alternative to supervised learning, as it can improve supervised classifiers by making use of unlabelled data. However, semi-supervised learning has not been studied much for problems with highly skewed class distributions, which are prevalent in bioinformatics. To address this limitation, we carry out a study of a semi-supervised learning algorithm, specifically self-training based on Naive Bayes, with focus on data-level approaches for handling imbalanced class distributions. Our study is conducted on the problem of predicting splice sites and it is based on datasets for which the ratio of positive to negative examples is 1-to-99. Our results show that under certain conditions semi-supervised learning algorithms are a better choice than purely supervised classification algorithms." @default.
- W2580187722 created "2017-02-03" @default.
- W2580187722 creator A5067341711 @default.
- W2580187722 creator A5085278189 @default.
- W2580187722 date "2017-01-01" @default.
- W2580187722 modified "2023-09-27" @default.
- W2580187722 title "An empirical study of self-training and data balancing techniques for splice site prediction" @default.
- W2580187722 cites W1498183065 @default.
- W2580187722 cites W1594145284 @default.
- W2580187722 cites W1964421503 @default.
- W2580187722 cites W1976526581 @default.
- W2580187722 cites W1978654848 @default.
- W2580187722 cites W1978982221 @default.
- W2580187722 cites W1980759842 @default.
- W2580187722 cites W1981813580 @default.
- W2580187722 cites W2023639956 @default.
- W2580187722 cites W2027514285 @default.
- W2580187722 cites W2042147513 @default.
- W2580187722 cites W2050754297 @default.
- W2580187722 cites W2052280136 @default.
- W2580187722 cites W2053943711 @default.
- W2580187722 cites W2058207467 @default.
- W2580187722 cites W2063861171 @default.
- W2580187722 cites W2071072418 @default.
- W2580187722 cites W2071983711 @default.
- W2580187722 cites W2079057609 @default.
- W2580187722 cites W2079545927 @default.
- W2580187722 cites W2083061393 @default.
- W2580187722 cites W2097089247 @default.
- W2580187722 cites W2099619800 @default.
- W2580187722 cites W2101210369 @default.
- W2580187722 cites W2109826612 @default.
- W2580187722 cites W2114718442 @default.
- W2580187722 cites W2114875384 @default.
- W2580187722 cites W2118978333 @default.
- W2580187722 cites W2120040939 @default.
- W2580187722 cites W2123720722 @default.
- W2580187722 cites W2129416674 @default.
- W2580187722 cites W2136490963 @default.
- W2580187722 cites W2141340736 @default.
- W2580187722 cites W2142875908 @default.
- W2580187722 cites W2143745416 @default.
- W2580187722 cites W2147148726 @default.
- W2580187722 cites W2148143831 @default.
- W2580187722 cites W2149024119 @default.
- W2580187722 cites W2149096772 @default.
- W2580187722 cites W2151801481 @default.
- W2580187722 cites W2153720577 @default.
- W2580187722 cites W2164837103 @default.
- W2580187722 cites W2167277498 @default.
- W2580187722 cites W2169813832 @default.
- W2580187722 cites W2183800414 @default.
- W2580187722 cites W2785349534 @default.
- W2580187722 cites W5236451 @default.
- W2580187722 cites W1578863401 @default.
- W2580187722 cites W2119500897 @default.
- W2580187722 cites W2410387131 @default.
- W2580187722 doi "https://doi.org/10.1504/ijbra.2017.10002831" @default.
- W2580187722 hasPublicationYear "2017" @default.
- W2580187722 type Work @default.
- W2580187722 sameAs 2580187722 @default.
- W2580187722 citedByCount "0" @default.
- W2580187722 crossrefType "journal-article" @default.
- W2580187722 hasAuthorship W2580187722A5067341711 @default.
- W2580187722 hasAuthorship W2580187722A5085278189 @default.
- W2580187722 hasConcept C107673813 @default.
- W2580187722 hasConcept C119857082 @default.
- W2580187722 hasConcept C12267149 @default.
- W2580187722 hasConcept C124101348 @default.
- W2580187722 hasConcept C136389625 @default.
- W2580187722 hasConcept C154945302 @default.
- W2580187722 hasConcept C207201462 @default.
- W2580187722 hasConcept C2777212361 @default.
- W2580187722 hasConcept C41008148 @default.
- W2580187722 hasConcept C50644808 @default.
- W2580187722 hasConcept C52001869 @default.
- W2580187722 hasConcept C58973888 @default.
- W2580187722 hasConceptScore W2580187722C107673813 @default.
- W2580187722 hasConceptScore W2580187722C119857082 @default.
- W2580187722 hasConceptScore W2580187722C12267149 @default.
- W2580187722 hasConceptScore W2580187722C124101348 @default.
- W2580187722 hasConceptScore W2580187722C136389625 @default.
- W2580187722 hasConceptScore W2580187722C154945302 @default.
- W2580187722 hasConceptScore W2580187722C207201462 @default.
- W2580187722 hasConceptScore W2580187722C2777212361 @default.
- W2580187722 hasConceptScore W2580187722C41008148 @default.
- W2580187722 hasConceptScore W2580187722C50644808 @default.
- W2580187722 hasConceptScore W2580187722C52001869 @default.
- W2580187722 hasConceptScore W2580187722C58973888 @default.
- W2580187722 hasLocation W25801877221 @default.
- W2580187722 hasOpenAccess W2580187722 @default.
- W2580187722 hasPrimaryLocation W25801877221 @default.
- W2580187722 hasRelatedWork W2345782172 @default.
- W2580187722 hasRelatedWork W2530500785 @default.
- W2580187722 hasRelatedWork W2619070928 @default.
- W2580187722 hasRelatedWork W2774137886 @default.
- W2580187722 hasRelatedWork W2782820916 @default.
- W2580187722 hasRelatedWork W2943527491 @default.
- W2580187722 hasRelatedWork W2950650819 @default.
- W2580187722 hasRelatedWork W2969701694 @default.