Matches in SemOpenAlex for { <https://semopenalex.org/work/W2580212082> ?p ?o ?g. }
- W2580212082 abstract "Nonparametric Bayesian inference has seen a rapid growth over the last decade but only few nonparametric Bayesian approaches to time series analysis have been developed. Most existing approaches use Whittle’s likelihood for Bayesian modelling of the spectral density as the main nonparametric characteristic of stationary time series. It is known that the loss of efficiency using Whittle’s likelihood can be substantial. On the other hand, parametric methods are more powerful than nonparametric methods if the observed time series is close to the considered model class but fail if the model is misspecified. Therefore, we suggest a nonparametric correction of a parametric likelihood that takes advantage of the efficiency of parametric models while mitigating sensitivities through a nonparametric amendment. We use a nonparametric Bernstein polynomial prior on the spectral density with weights induced by a Dirichlet process and prove posterior consistency for Gaussian stationary time series. Bayesian posterior computations are implemented via an MH-within-Gibbs sampler and the performance of the nonparametrically corrected likelihood for Gaussian time series is illustrated in a simulation study and in three astronomy applications, including estimating the spectral density of gravitational wave data from the Advanced Laser Interferometer Gravitational-wave Observatory (LIGO)." @default.
- W2580212082 created "2017-02-03" @default.
- W2580212082 creator A5005687694 @default.
- W2580212082 creator A5010334664 @default.
- W2580212082 creator A5077902725 @default.
- W2580212082 creator A5090070607 @default.
- W2580212082 date "2019-12-01" @default.
- W2580212082 modified "2023-10-16" @default.
- W2580212082 title "Beyond Whittle: Nonparametric Correction of a Parametric Likelihood with a Focus on Bayesian Time Series Analysis" @default.
- W2580212082 cites W1536497620 @default.
- W2580212082 cites W1548584376 @default.
- W2580212082 cites W1609127433 @default.
- W2580212082 cites W1656051923 @default.
- W2580212082 cites W1807453861 @default.
- W2580212082 cites W1966405376 @default.
- W2580212082 cites W1975552482 @default.
- W2580212082 cites W1977648299 @default.
- W2580212082 cites W1979575715 @default.
- W2580212082 cites W1980264500 @default.
- W2580212082 cites W1982054212 @default.
- W2580212082 cites W1982992474 @default.
- W2580212082 cites W1992878232 @default.
- W2580212082 cites W1999237239 @default.
- W2580212082 cites W1999996900 @default.
- W2580212082 cites W2021193403 @default.
- W2580212082 cites W2028720452 @default.
- W2580212082 cites W2032270307 @default.
- W2580212082 cites W2043988807 @default.
- W2580212082 cites W2047368053 @default.
- W2580212082 cites W2047978125 @default.
- W2580212082 cites W2055996859 @default.
- W2580212082 cites W2062764927 @default.
- W2580212082 cites W2065193411 @default.
- W2580212082 cites W2066447749 @default.
- W2580212082 cites W2068637790 @default.
- W2580212082 cites W2069137694 @default.
- W2580212082 cites W2073438042 @default.
- W2580212082 cites W2074150142 @default.
- W2580212082 cites W2077411779 @default.
- W2580212082 cites W2077845604 @default.
- W2580212082 cites W2091773759 @default.
- W2580212082 cites W2091983797 @default.
- W2580212082 cites W2095921750 @default.
- W2580212082 cites W2106706098 @default.
- W2580212082 cites W2120232414 @default.
- W2580212082 cites W2141882932 @default.
- W2580212082 cites W2148329315 @default.
- W2580212082 cites W2157107315 @default.
- W2580212082 cites W2165429502 @default.
- W2580212082 cites W2179874418 @default.
- W2580212082 cites W2580212082 @default.
- W2580212082 cites W2588602095 @default.
- W2580212082 cites W2606866400 @default.
- W2580212082 cites W2904100164 @default.
- W2580212082 cites W2964180497 @default.
- W2580212082 cites W3101688867 @default.
- W2580212082 cites W3105105114 @default.
- W2580212082 cites W3121804411 @default.
- W2580212082 cites W4214833947 @default.
- W2580212082 cites W4308951891 @default.
- W2580212082 doi "https://doi.org/10.1214/18-ba1126" @default.
- W2580212082 hasPublicationYear "2019" @default.
- W2580212082 type Work @default.
- W2580212082 sameAs 2580212082 @default.
- W2580212082 citedByCount "16" @default.
- W2580212082 countsByYear W25802120822018 @default.
- W2580212082 countsByYear W25802120822019 @default.
- W2580212082 countsByYear W25802120822020 @default.
- W2580212082 countsByYear W25802120822021 @default.
- W2580212082 countsByYear W25802120822022 @default.
- W2580212082 countsByYear W25802120822023 @default.
- W2580212082 crossrefType "journal-article" @default.
- W2580212082 hasAuthorship W2580212082A5005687694 @default.
- W2580212082 hasAuthorship W2580212082A5010334664 @default.
- W2580212082 hasAuthorship W2580212082A5077902725 @default.
- W2580212082 hasAuthorship W2580212082A5090070607 @default.
- W2580212082 hasBestOaLocation W25802120821 @default.
- W2580212082 hasConcept C102366305 @default.
- W2580212082 hasConcept C105795698 @default.
- W2580212082 hasConcept C107673813 @default.
- W2580212082 hasConcept C11413529 @default.
- W2580212082 hasConcept C117251300 @default.
- W2580212082 hasConcept C121332964 @default.
- W2580212082 hasConcept C143724316 @default.
- W2580212082 hasConcept C151730666 @default.
- W2580212082 hasConcept C158424031 @default.
- W2580212082 hasConcept C163716315 @default.
- W2580212082 hasConcept C24574437 @default.
- W2580212082 hasConcept C2781280628 @default.
- W2580212082 hasConcept C28826006 @default.
- W2580212082 hasConcept C33923547 @default.
- W2580212082 hasConcept C61326573 @default.
- W2580212082 hasConcept C62520636 @default.
- W2580212082 hasConcept C86803240 @default.
- W2580212082 hasConcept C95923904 @default.
- W2580212082 hasConceptScore W2580212082C102366305 @default.
- W2580212082 hasConceptScore W2580212082C105795698 @default.
- W2580212082 hasConceptScore W2580212082C107673813 @default.
- W2580212082 hasConceptScore W2580212082C11413529 @default.
- W2580212082 hasConceptScore W2580212082C117251300 @default.