Matches in SemOpenAlex for { <https://semopenalex.org/work/W2580267525> ?p ?o ?g. }
Showing items 1 to 88 of
88
with 100 items per page.
- W2580267525 endingPage "32" @default.
- W2580267525 startingPage "22" @default.
- W2580267525 abstract "Highly efficient sequential nonlinear regression algorithms are proposed.Piecewise linear models are used for the nonlinear modeling.Region boundaries are continuously updated according to the data statistics.Second order NewtonRaphson methods are used for the adaptation of boundaries. We introduce highly efficient online nonlinear regression algorithms that are suitable for real life applications. We process the data in a truly online manner such that no storage is needed, i.e., the data is discarded after being used. For nonlinear modeling we use a hierarchical piecewise linear approach based on the notion of decision trees where the space of the regressor vectors is adaptively partitioned based on the performance. As the first time in the literature, we learn both the piecewise linear partitioning of the regressor space as well as the linear models in each region using highly effective second order methods, i.e., NewtonRaphson Methods. Hence, we avoid the well known over fitting issues by using piecewise linear models, however, since both the region boundaries as well as the linear models in each region are trained using the second order methods, we achieve substantial performance compared to the state of the art. We demonstrate our gains over the well known benchmark data sets and provide performance results in an individual sequence manner guaranteed to hold without any statistical assumptions. Hence, the introduced algorithms address computational complexity issues widely encountered in real life applications while providing superior guaranteed performance in a strong deterministic sense." @default.
- W2580267525 created "2017-02-03" @default.
- W2580267525 creator A5064582144 @default.
- W2580267525 creator A5064912897 @default.
- W2580267525 creator A5089040739 @default.
- W2580267525 date "2017-08-01" @default.
- W2580267525 modified "2023-09-23" @default.
- W2580267525 title "Highly efficient hierarchical online nonlinear regression using second order methods" @default.
- W2580267525 cites W1821491182 @default.
- W2580267525 cites W1965130726 @default.
- W2580267525 cites W1966048296 @default.
- W2580267525 cites W1978071126 @default.
- W2580267525 cites W1982840058 @default.
- W2580267525 cites W1995444903 @default.
- W2580267525 cites W2026670441 @default.
- W2580267525 cites W2040263621 @default.
- W2580267525 cites W2060753468 @default.
- W2580267525 cites W2096352571 @default.
- W2580267525 cites W2099830893 @default.
- W2580267525 cites W2101159990 @default.
- W2580267525 cites W2117250207 @default.
- W2580267525 cites W2119328597 @default.
- W2580267525 cites W2122963687 @default.
- W2580267525 cites W2129160848 @default.
- W2580267525 cites W2153946895 @default.
- W2580267525 cites W2155817051 @default.
- W2580267525 cites W2163294786 @default.
- W2580267525 cites W2964229844 @default.
- W2580267525 cites W4247131500 @default.
- W2580267525 cites W4249599117 @default.
- W2580267525 doi "https://doi.org/10.1016/j.sigpro.2017.01.029" @default.
- W2580267525 hasPublicationYear "2017" @default.
- W2580267525 type Work @default.
- W2580267525 sameAs 2580267525 @default.
- W2580267525 citedByCount "2" @default.
- W2580267525 countsByYear W25802675252022 @default.
- W2580267525 countsByYear W25802675252023 @default.
- W2580267525 crossrefType "journal-article" @default.
- W2580267525 hasAuthorship W2580267525A5064582144 @default.
- W2580267525 hasAuthorship W2580267525A5064912897 @default.
- W2580267525 hasAuthorship W2580267525A5089040739 @default.
- W2580267525 hasBestOaLocation W25802675252 @default.
- W2580267525 hasConcept C105795698 @default.
- W2580267525 hasConcept C11413529 @default.
- W2580267525 hasConcept C119857082 @default.
- W2580267525 hasConcept C121332964 @default.
- W2580267525 hasConcept C152877465 @default.
- W2580267525 hasConcept C154945302 @default.
- W2580267525 hasConcept C158622935 @default.
- W2580267525 hasConcept C33923547 @default.
- W2580267525 hasConcept C41008148 @default.
- W2580267525 hasConcept C46889948 @default.
- W2580267525 hasConcept C62520636 @default.
- W2580267525 hasConcept C83546350 @default.
- W2580267525 hasConceptScore W2580267525C105795698 @default.
- W2580267525 hasConceptScore W2580267525C11413529 @default.
- W2580267525 hasConceptScore W2580267525C119857082 @default.
- W2580267525 hasConceptScore W2580267525C121332964 @default.
- W2580267525 hasConceptScore W2580267525C152877465 @default.
- W2580267525 hasConceptScore W2580267525C154945302 @default.
- W2580267525 hasConceptScore W2580267525C158622935 @default.
- W2580267525 hasConceptScore W2580267525C33923547 @default.
- W2580267525 hasConceptScore W2580267525C41008148 @default.
- W2580267525 hasConceptScore W2580267525C46889948 @default.
- W2580267525 hasConceptScore W2580267525C62520636 @default.
- W2580267525 hasConceptScore W2580267525C83546350 @default.
- W2580267525 hasLocation W25802675251 @default.
- W2580267525 hasLocation W25802675252 @default.
- W2580267525 hasLocation W25802675253 @default.
- W2580267525 hasOpenAccess W2580267525 @default.
- W2580267525 hasPrimaryLocation W25802675251 @default.
- W2580267525 hasRelatedWork W1497432777 @default.
- W2580267525 hasRelatedWork W2169180051 @default.
- W2580267525 hasRelatedWork W2339040483 @default.
- W2580267525 hasRelatedWork W2348421932 @default.
- W2580267525 hasRelatedWork W2353154434 @default.
- W2580267525 hasRelatedWork W2374340323 @default.
- W2580267525 hasRelatedWork W3141321603 @default.
- W2580267525 hasRelatedWork W3186839548 @default.
- W2580267525 hasRelatedWork W4220799502 @default.
- W2580267525 hasRelatedWork W4324119833 @default.
- W2580267525 hasVolume "137" @default.
- W2580267525 isParatext "false" @default.
- W2580267525 isRetracted "false" @default.
- W2580267525 magId "2580267525" @default.
- W2580267525 workType "article" @default.