Matches in SemOpenAlex for { <https://semopenalex.org/work/W2580498029> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2580498029 endingPage "94" @default.
- W2580498029 startingPage "85" @default.
- W2580498029 abstract "Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an efficient technology, is always desired by experts. In this case, classification could be considered as one of the most important methods of extracting information from digital satellite images. Selecting the best classification method and applying the proper values for parameters extremely influence the trust level of extracted land use maps. This research is an applied study which attempts to introduce Support Vector Machines (SVM) classification method, a recent development from the machine learning community. Moreover, we prove its potential for structure–activity relationship analysis on Aster multispectral data of central county of Kabodar-Ahang region in Hamedan, Iran. Accuracy of SVMs method is varied by the type of kernel functions and its parameters. The purpose of this research is to find the accuracy of Land use extraction by SVM method by Polynomial and radial basis functions kernel with their estimated optimum parameters in addition to compare the results with Maximum Likelihood method. Most of the scientists imply that Maximum Likelihood method is suitable for classification. Therefore, we try to compare SVM with ML method and to deliberate the efficiency of this new method in classification progress on Aster multispectral data. The accuracy of SVM method by Polynomial and radial basis functions kernel with optimum parameters and ML classification methods achieved 93.18%, 91.77% and 88.35 % respectively as an overall accuracy. By comparing the accuracy of these methods, SVM method by Polynomial kernel was evaluated as suitable. Therefore, we can suggest using SVM method especially with the use of Polynomial kernel to determine land use. In general, the results of this research are very practical in natural resources conservation planning and studies. Also, this study verifies the effectiveness and robustness of SVMs in the classification of remotely sensed images." @default.
- W2580498029 created "2017-02-03" @default.
- W2580498029 creator A5042669880 @default.
- W2580498029 creator A5057859059 @default.
- W2580498029 creator A5087693955 @default.
- W2580498029 date "2012-09-22" @default.
- W2580498029 modified "2023-09-23" @default.
- W2580498029 title "Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery" @default.
- W2580498029 hasPublicationYear "2012" @default.
- W2580498029 type Work @default.
- W2580498029 sameAs 2580498029 @default.
- W2580498029 citedByCount "0" @default.
- W2580498029 crossrefType "journal-article" @default.
- W2580498029 hasAuthorship W2580498029A5042669880 @default.
- W2580498029 hasAuthorship W2580498029A5057859059 @default.
- W2580498029 hasAuthorship W2580498029A5087693955 @default.
- W2580498029 hasConcept C104541649 @default.
- W2580498029 hasConcept C114614502 @default.
- W2580498029 hasConcept C12267149 @default.
- W2580498029 hasConcept C124101348 @default.
- W2580498029 hasConcept C127413603 @default.
- W2580498029 hasConcept C13772937 @default.
- W2580498029 hasConcept C147176958 @default.
- W2580498029 hasConcept C153180895 @default.
- W2580498029 hasConcept C154945302 @default.
- W2580498029 hasConcept C173163844 @default.
- W2580498029 hasConcept C181843262 @default.
- W2580498029 hasConcept C195807954 @default.
- W2580498029 hasConcept C205649164 @default.
- W2580498029 hasConcept C2780648208 @default.
- W2580498029 hasConcept C33923547 @default.
- W2580498029 hasConcept C41008148 @default.
- W2580498029 hasConcept C4792198 @default.
- W2580498029 hasConcept C62649853 @default.
- W2580498029 hasConcept C74193536 @default.
- W2580498029 hasConceptScore W2580498029C104541649 @default.
- W2580498029 hasConceptScore W2580498029C114614502 @default.
- W2580498029 hasConceptScore W2580498029C12267149 @default.
- W2580498029 hasConceptScore W2580498029C124101348 @default.
- W2580498029 hasConceptScore W2580498029C127413603 @default.
- W2580498029 hasConceptScore W2580498029C13772937 @default.
- W2580498029 hasConceptScore W2580498029C147176958 @default.
- W2580498029 hasConceptScore W2580498029C153180895 @default.
- W2580498029 hasConceptScore W2580498029C154945302 @default.
- W2580498029 hasConceptScore W2580498029C173163844 @default.
- W2580498029 hasConceptScore W2580498029C181843262 @default.
- W2580498029 hasConceptScore W2580498029C195807954 @default.
- W2580498029 hasConceptScore W2580498029C205649164 @default.
- W2580498029 hasConceptScore W2580498029C2780648208 @default.
- W2580498029 hasConceptScore W2580498029C33923547 @default.
- W2580498029 hasConceptScore W2580498029C41008148 @default.
- W2580498029 hasConceptScore W2580498029C4792198 @default.
- W2580498029 hasConceptScore W2580498029C62649853 @default.
- W2580498029 hasConceptScore W2580498029C74193536 @default.
- W2580498029 hasIssue "2" @default.
- W2580498029 hasLocation W25804980291 @default.
- W2580498029 hasOpenAccess W2580498029 @default.
- W2580498029 hasPrimaryLocation W25804980291 @default.
- W2580498029 hasRelatedWork W1536136168 @default.
- W2580498029 hasRelatedWork W1699484993 @default.
- W2580498029 hasRelatedWork W1978778715 @default.
- W2580498029 hasRelatedWork W2061374317 @default.
- W2580498029 hasRelatedWork W2092675366 @default.
- W2580498029 hasRelatedWork W2097028249 @default.
- W2580498029 hasRelatedWork W2106330194 @default.
- W2580498029 hasRelatedWork W2221380621 @default.
- W2580498029 hasRelatedWork W2353137123 @default.
- W2580498029 hasRelatedWork W2356042302 @default.
- W2580498029 hasRelatedWork W2365358718 @default.
- W2580498029 hasRelatedWork W2373523947 @default.
- W2580498029 hasRelatedWork W2425854049 @default.
- W2580498029 hasRelatedWork W2529523799 @default.
- W2580498029 hasRelatedWork W2539261197 @default.
- W2580498029 hasRelatedWork W2602513347 @default.
- W2580498029 hasRelatedWork W2739203451 @default.
- W2580498029 hasRelatedWork W2995068912 @default.
- W2580498029 hasRelatedWork W884079123 @default.
- W2580498029 hasRelatedWork W2306044186 @default.
- W2580498029 hasVolume "4" @default.
- W2580498029 isParatext "false" @default.
- W2580498029 isRetracted "false" @default.
- W2580498029 magId "2580498029" @default.
- W2580498029 workType "article" @default.