Matches in SemOpenAlex for { <https://semopenalex.org/work/W2580979951> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2580979951 endingPage "1240" @default.
- W2580979951 startingPage "1235" @default.
- W2580979951 abstract "The main aim of this study was introducing a comprehensive model of bank customers᾽ loyalty evaluation based on the assessment and comparison of different clustering methods᾽ performance. This study also pursues the following specific objectives: a) using different clustering methods and comparing them for customer classification, b) finding the effective variables in determining the customer loyalty, and c) using different collective classification methods to increase the modeling accuracy and comparing the results with the basic methods. Since loyal customers generate more profit, this study aims at introducing a two-step model for classification of customers and their loyalty. For this purpose, various methods of clustering such as K-medoids, X-means and K-means were used, the last of which outperformed the other two through comparing with Davis-Bouldin index. Customers were clustered by using K-means and members of these four clusters were analyzed and labeled. Then, a predictive model was run based on demographic variables of customers using various classification methods such as DT (Decision Tree), ANN (Artificial Neural Networks), NB (Naive Bayes), KNN (K-Nearest Neighbors) and SVM (Support Vector Machine), as well as their bagging and boosting to predict the class of loyal customers. The results showed that the bagging-ANN was the most accurate method in predicting loyal customers. This two-stage model can be used in banks and financial institutions with similar data to identify the type of future customers." @default.
- W2580979951 created "2017-02-03" @default.
- W2580979951 creator A5057087345 @default.
- W2580979951 creator A5081393512 @default.
- W2580979951 date "2016-12-18" @default.
- W2580979951 modified "2023-10-14" @default.
- W2580979951 title "Introducing A Hybrid Data Mining Model to Evaluate Customer Loyalty" @default.
- W2580979951 cites W1600151756 @default.
- W2580979951 cites W1971960389 @default.
- W2580979951 cites W1993425841 @default.
- W2580979951 cites W1998612608 @default.
- W2580979951 cites W2008299439 @default.
- W2580979951 cites W2009349621 @default.
- W2580979951 cites W2015557855 @default.
- W2580979951 cites W2068857716 @default.
- W2580979951 cites W2099617930 @default.
- W2580979951 cites W2129781261 @default.
- W2580979951 cites W2147953360 @default.
- W2580979951 cites W2481897712 @default.
- W2580979951 doi "https://doi.org/10.48084/etasr.741" @default.
- W2580979951 hasPublicationYear "2016" @default.
- W2580979951 type Work @default.
- W2580979951 sameAs 2580979951 @default.
- W2580979951 citedByCount "2" @default.
- W2580979951 countsByYear W25809799512022 @default.
- W2580979951 countsByYear W25809799512023 @default.
- W2580979951 crossrefType "journal-article" @default.
- W2580979951 hasAuthorship W2580979951A5057087345 @default.
- W2580979951 hasAuthorship W2580979951A5081393512 @default.
- W2580979951 hasBestOaLocation W25809799511 @default.
- W2580979951 hasConcept C119857082 @default.
- W2580979951 hasConcept C12267149 @default.
- W2580979951 hasConcept C124101348 @default.
- W2580979951 hasConcept C140781008 @default.
- W2580979951 hasConcept C144133560 @default.
- W2580979951 hasConcept C146897074 @default.
- W2580979951 hasConcept C154945302 @default.
- W2580979951 hasConcept C162853370 @default.
- W2580979951 hasConcept C2776967331 @default.
- W2580979951 hasConcept C2780378061 @default.
- W2580979951 hasConcept C41008148 @default.
- W2580979951 hasConcept C46686674 @default.
- W2580979951 hasConcept C50644808 @default.
- W2580979951 hasConcept C52001869 @default.
- W2580979951 hasConcept C63085389 @default.
- W2580979951 hasConcept C73555534 @default.
- W2580979951 hasConcept C84525736 @default.
- W2580979951 hasConceptScore W2580979951C119857082 @default.
- W2580979951 hasConceptScore W2580979951C12267149 @default.
- W2580979951 hasConceptScore W2580979951C124101348 @default.
- W2580979951 hasConceptScore W2580979951C140781008 @default.
- W2580979951 hasConceptScore W2580979951C144133560 @default.
- W2580979951 hasConceptScore W2580979951C146897074 @default.
- W2580979951 hasConceptScore W2580979951C154945302 @default.
- W2580979951 hasConceptScore W2580979951C162853370 @default.
- W2580979951 hasConceptScore W2580979951C2776967331 @default.
- W2580979951 hasConceptScore W2580979951C2780378061 @default.
- W2580979951 hasConceptScore W2580979951C41008148 @default.
- W2580979951 hasConceptScore W2580979951C46686674 @default.
- W2580979951 hasConceptScore W2580979951C50644808 @default.
- W2580979951 hasConceptScore W2580979951C52001869 @default.
- W2580979951 hasConceptScore W2580979951C63085389 @default.
- W2580979951 hasConceptScore W2580979951C73555534 @default.
- W2580979951 hasConceptScore W2580979951C84525736 @default.
- W2580979951 hasIssue "6" @default.
- W2580979951 hasLocation W25809799511 @default.
- W2580979951 hasLocation W25809799512 @default.
- W2580979951 hasLocation W25809799513 @default.
- W2580979951 hasOpenAccess W2580979951 @default.
- W2580979951 hasPrimaryLocation W25809799511 @default.
- W2580979951 hasRelatedWork W1470425429 @default.
- W2580979951 hasRelatedWork W1996541855 @default.
- W2580979951 hasRelatedWork W3186233728 @default.
- W2580979951 hasRelatedWork W3195168932 @default.
- W2580979951 hasRelatedWork W3204641204 @default.
- W2580979951 hasRelatedWork W3210696866 @default.
- W2580979951 hasRelatedWork W4291177832 @default.
- W2580979951 hasRelatedWork W4319718059 @default.
- W2580979951 hasRelatedWork W4377964522 @default.
- W2580979951 hasRelatedWork W4384345534 @default.
- W2580979951 hasVolume "6" @default.
- W2580979951 isParatext "false" @default.
- W2580979951 isRetracted "false" @default.
- W2580979951 magId "2580979951" @default.
- W2580979951 workType "article" @default.