Matches in SemOpenAlex for { <https://semopenalex.org/work/W2581180876> ?p ?o ?g. }
- W2581180876 endingPage "149" @default.
- W2581180876 startingPage "149" @default.
- W2581180876 abstract "With the success of the genome-wide association studies (GWASs), many candidate loci for complex human diseases have been reported in the GWAS catalog. Recently, many disease prediction models based on penalized regression or statistical learning methods were proposed using candidate causal variants from significant single-nucleotide polymorphisms of GWASs. However, there have been only a few systematic studies comparing existing methods. In this study, we first constructed risk prediction models, such as stepwise linear regression (SLR), least absolute shrinkage and selection operator (LASSO), and Elastic-Net (EN), using a GWAS chip and GWAS catalog. We then compared the prediction accuracy by calculating the mean square error (MSE) value on data from the Korea Association Resource (KARE) with body mass index. Our results show that SLR provides a smaller MSE value than the other methods, while the numbers of selected variables in each model were similar. Keywords: body mass index, clinical prediction rule, genome-wide association study, penalized regression models, variable selection" @default.
- W2581180876 created "2017-02-03" @default.
- W2581180876 creator A5011915643 @default.
- W2581180876 creator A5021812132 @default.
- W2581180876 creator A5088971868 @default.
- W2581180876 creator A5090214669 @default.
- W2581180876 date "2016-01-01" @default.
- W2581180876 modified "2023-10-16" @default.
- W2581180876 title "Prediction of Quantitative Traits Using Common Genetic Variants: Application to Body Mass Index" @default.
- W2581180876 cites W1790281615 @default.
- W2581180876 cites W1832133707 @default.
- W2581180876 cites W1959569028 @default.
- W2581180876 cites W1965732593 @default.
- W2581180876 cites W1976844911 @default.
- W2581180876 cites W1980991473 @default.
- W2581180876 cites W1990139289 @default.
- W2581180876 cites W1991838121 @default.
- W2581180876 cites W2002466929 @default.
- W2581180876 cites W2014725748 @default.
- W2581180876 cites W2028922548 @default.
- W2581180876 cites W2036546668 @default.
- W2581180876 cites W2058240339 @default.
- W2581180876 cites W2058507142 @default.
- W2581180876 cites W2072664252 @default.
- W2581180876 cites W2079388655 @default.
- W2581180876 cites W2080713361 @default.
- W2581180876 cites W2093362931 @default.
- W2581180876 cites W2097360283 @default.
- W2581180876 cites W2097660065 @default.
- W2581180876 cites W2098597355 @default.
- W2581180876 cites W2099356722 @default.
- W2581180876 cites W2109498123 @default.
- W2581180876 cites W2116393464 @default.
- W2581180876 cites W2116868464 @default.
- W2581180876 cites W2121063416 @default.
- W2581180876 cites W2121514846 @default.
- W2581180876 cites W2122825543 @default.
- W2581180876 cites W2140609764 @default.
- W2581180876 cites W2143142289 @default.
- W2581180876 cites W2150965754 @default.
- W2581180876 cites W2154777852 @default.
- W2581180876 cites W2164727721 @default.
- W2581180876 cites W4234698323 @default.
- W2581180876 cites W4294541781 @default.
- W2581180876 doi "https://doi.org/10.5808/gi.2016.14.4.149" @default.
- W2581180876 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5287118" @default.
- W2581180876 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28154505" @default.
- W2581180876 hasPublicationYear "2016" @default.
- W2581180876 type Work @default.
- W2581180876 sameAs 2581180876 @default.
- W2581180876 citedByCount "6" @default.
- W2581180876 countsByYear W25811808762017 @default.
- W2581180876 countsByYear W25811808762019 @default.
- W2581180876 countsByYear W25811808762020 @default.
- W2581180876 crossrefType "journal-article" @default.
- W2581180876 hasAuthorship W2581180876A5011915643 @default.
- W2581180876 hasAuthorship W2581180876A5021812132 @default.
- W2581180876 hasAuthorship W2581180876A5088971868 @default.
- W2581180876 hasAuthorship W2581180876A5090214669 @default.
- W2581180876 hasBestOaLocation W25811808761 @default.
- W2581180876 hasConcept C104317684 @default.
- W2581180876 hasConcept C105795698 @default.
- W2581180876 hasConcept C106208931 @default.
- W2581180876 hasConcept C124101348 @default.
- W2581180876 hasConcept C135763542 @default.
- W2581180876 hasConcept C136764020 @default.
- W2581180876 hasConcept C139945424 @default.
- W2581180876 hasConcept C148483581 @default.
- W2581180876 hasConcept C152877465 @default.
- W2581180876 hasConcept C153209595 @default.
- W2581180876 hasConcept C154945302 @default.
- W2581180876 hasConcept C170964787 @default.
- W2581180876 hasConcept C186413461 @default.
- W2581180876 hasConcept C33923547 @default.
- W2581180876 hasConcept C37616216 @default.
- W2581180876 hasConcept C41008148 @default.
- W2581180876 hasConcept C45804977 @default.
- W2581180876 hasConcept C48921125 @default.
- W2581180876 hasConcept C54355233 @default.
- W2581180876 hasConcept C83546350 @default.
- W2581180876 hasConcept C86803240 @default.
- W2581180876 hasConceptScore W2581180876C104317684 @default.
- W2581180876 hasConceptScore W2581180876C105795698 @default.
- W2581180876 hasConceptScore W2581180876C106208931 @default.
- W2581180876 hasConceptScore W2581180876C124101348 @default.
- W2581180876 hasConceptScore W2581180876C135763542 @default.
- W2581180876 hasConceptScore W2581180876C136764020 @default.
- W2581180876 hasConceptScore W2581180876C139945424 @default.
- W2581180876 hasConceptScore W2581180876C148483581 @default.
- W2581180876 hasConceptScore W2581180876C152877465 @default.
- W2581180876 hasConceptScore W2581180876C153209595 @default.
- W2581180876 hasConceptScore W2581180876C154945302 @default.
- W2581180876 hasConceptScore W2581180876C170964787 @default.
- W2581180876 hasConceptScore W2581180876C186413461 @default.
- W2581180876 hasConceptScore W2581180876C33923547 @default.
- W2581180876 hasConceptScore W2581180876C37616216 @default.
- W2581180876 hasConceptScore W2581180876C41008148 @default.
- W2581180876 hasConceptScore W2581180876C45804977 @default.