Matches in SemOpenAlex for { <https://semopenalex.org/work/W2581683348> ?p ?o ?g. }
- W2581683348 abstract "Design optimization under uncertainty is notoriously difficult when the objective function is expensive to evaluate. State-of-the-art techniques, e.g., stochastic optimization or sampling average approximation, fail to learn exploitable patterns from collected data and require a lot of objective function evaluations. There is a need for techniques that alleviate the high cost of information acquisition and select sequential simulations optimally. In the field of deterministic single-objective unconstrained global optimization, the Bayesian global optimization (BGO) approach has been relatively successful in addressing the information acquisition problem. BGO builds a probabilistic surrogate of the expensive objective function and uses it to define an information acquisition function (IAF) that quantifies the merit of making new objective evaluations. In this work, we reformulate the expected improvement (EI) IAF to filter out parametric and measurement uncertainties. We bypass the curse of dimensionality, since the method does not require learning the response surface as a function of the stochastic parameters, and we employ a fully Bayesian interpretation of Gaussian processes (GPs) by constructing a particle approximation of the posterior of its hyperparameters using adaptive Markov chain Monte Carlo (MCMC) to increase the methods robustness. Also, our approach quantifies the epistemic uncertainty on the location of the optimum and the optimal value as induced by the limited number of objective evaluations used in obtaining it. We verify and validate our approach by solving two synthetic optimization problems under uncertainty and demonstrate it by solving the oil-well placement problem (OWPP) with uncertainties in the permeability field and the oil price time series." @default.
- W2581683348 created "2017-02-03" @default.
- W2581683348 creator A5025062741 @default.
- W2581683348 creator A5036201536 @default.
- W2581683348 creator A5043072708 @default.
- W2581683348 date "2016-09-12" @default.
- W2581683348 modified "2023-09-23" @default.
- W2581683348 title "Extending Expected Improvement for High-Dimensional Stochastic Optimization of Expensive Black-Box Functions" @default.
- W2581683348 cites W114517082 @default.
- W2581683348 cites W1510052597 @default.
- W2581683348 cites W1576375403 @default.
- W2581683348 cites W1707125689 @default.
- W2581683348 cites W1969513389 @default.
- W2581683348 cites W1972209418 @default.
- W2581683348 cites W1983139887 @default.
- W2581683348 cites W1983916623 @default.
- W2581683348 cites W1985926778 @default.
- W2581683348 cites W1988447552 @default.
- W2581683348 cites W1991624657 @default.
- W2581683348 cites W2004808074 @default.
- W2581683348 cites W2006681603 @default.
- W2581683348 cites W2020732830 @default.
- W2581683348 cites W2021125631 @default.
- W2581683348 cites W2040932457 @default.
- W2581683348 cites W2055689370 @default.
- W2581683348 cites W2060682310 @default.
- W2581683348 cites W2063180182 @default.
- W2581683348 cites W2071544114 @default.
- W2581683348 cites W2072302356 @default.
- W2581683348 cites W2074984119 @default.
- W2581683348 cites W2106326515 @default.
- W2581683348 cites W2149252196 @default.
- W2581683348 cites W2151238122 @default.
- W2581683348 cites W2151604161 @default.
- W2581683348 cites W2155927283 @default.
- W2581683348 cites W2177636146 @default.
- W2581683348 cites W4249517230 @default.
- W2581683348 doi "https://doi.org/10.1115/1.4034104" @default.
- W2581683348 hasPublicationYear "2016" @default.
- W2581683348 type Work @default.
- W2581683348 sameAs 2581683348 @default.
- W2581683348 citedByCount "12" @default.
- W2581683348 countsByYear W25816833482015 @default.
- W2581683348 countsByYear W25816833482018 @default.
- W2581683348 countsByYear W25816833482019 @default.
- W2581683348 countsByYear W25816833482020 @default.
- W2581683348 countsByYear W25816833482021 @default.
- W2581683348 countsByYear W25816833482022 @default.
- W2581683348 crossrefType "journal-article" @default.
- W2581683348 hasAuthorship W2581683348A5025062741 @default.
- W2581683348 hasAuthorship W2581683348A5036201536 @default.
- W2581683348 hasAuthorship W2581683348A5043072708 @default.
- W2581683348 hasBestOaLocation W25816833482 @default.
- W2581683348 hasConcept C104317684 @default.
- W2581683348 hasConcept C105795698 @default.
- W2581683348 hasConcept C107673813 @default.
- W2581683348 hasConcept C111030470 @default.
- W2581683348 hasConcept C111350023 @default.
- W2581683348 hasConcept C117251300 @default.
- W2581683348 hasConcept C119857082 @default.
- W2581683348 hasConcept C126255220 @default.
- W2581683348 hasConcept C154945302 @default.
- W2581683348 hasConcept C185592680 @default.
- W2581683348 hasConcept C193254401 @default.
- W2581683348 hasConcept C194387892 @default.
- W2581683348 hasConcept C2778049539 @default.
- W2581683348 hasConcept C32230216 @default.
- W2581683348 hasConcept C33923547 @default.
- W2581683348 hasConcept C41008148 @default.
- W2581683348 hasConcept C55493867 @default.
- W2581683348 hasConcept C63479239 @default.
- W2581683348 hasConceptScore W2581683348C104317684 @default.
- W2581683348 hasConceptScore W2581683348C105795698 @default.
- W2581683348 hasConceptScore W2581683348C107673813 @default.
- W2581683348 hasConceptScore W2581683348C111030470 @default.
- W2581683348 hasConceptScore W2581683348C111350023 @default.
- W2581683348 hasConceptScore W2581683348C117251300 @default.
- W2581683348 hasConceptScore W2581683348C119857082 @default.
- W2581683348 hasConceptScore W2581683348C126255220 @default.
- W2581683348 hasConceptScore W2581683348C154945302 @default.
- W2581683348 hasConceptScore W2581683348C185592680 @default.
- W2581683348 hasConceptScore W2581683348C193254401 @default.
- W2581683348 hasConceptScore W2581683348C194387892 @default.
- W2581683348 hasConceptScore W2581683348C2778049539 @default.
- W2581683348 hasConceptScore W2581683348C32230216 @default.
- W2581683348 hasConceptScore W2581683348C33923547 @default.
- W2581683348 hasConceptScore W2581683348C41008148 @default.
- W2581683348 hasConceptScore W2581683348C55493867 @default.
- W2581683348 hasConceptScore W2581683348C63479239 @default.
- W2581683348 hasIssue "11" @default.
- W2581683348 hasLocation W25816833481 @default.
- W2581683348 hasLocation W25816833482 @default.
- W2581683348 hasOpenAccess W2581683348 @default.
- W2581683348 hasPrimaryLocation W25816833481 @default.
- W2581683348 hasRelatedWork W1513125973 @default.
- W2581683348 hasRelatedWork W2014375465 @default.
- W2581683348 hasRelatedWork W2070893110 @default.
- W2581683348 hasRelatedWork W2085198569 @default.
- W2581683348 hasRelatedWork W2090984822 @default.
- W2581683348 hasRelatedWork W2122656899 @default.