Matches in SemOpenAlex for { <https://semopenalex.org/work/W2581774242> ?p ?o ?g. }
- W2581774242 endingPage "830" @default.
- W2581774242 startingPage "821" @default.
- W2581774242 abstract "ObjectiveTo investigate the expression of long interspersed element (LINE) 1, human endogenous retrovirus (HERV) K10, and short interspersed element–VNTR–Alu element (SVA) retrotransposons in ejaculated human spermatozoa by means of reverse-transcription (RT) polymerase chain reaction (PCR) analysis as well as the potential incorporation of cloned human and mouse active retroelements in human sperm cell genome.DesignLaboratory study.SettingUniversity research laboratories and academic hospital.Patient(s)Normozoospermic and oligozoospermic white men.Intervention(s)RT-PCR analysis was performed to confirm the retrotransposon expression in human spermatozoa. Exogenous retroelements were tagged with a plasmid containing a green fluorescence (EGFP) retrotransposition cassette, and the de novo retrotransposition events were tested with the use of PCR, fluorescence-activated cell sorting analysis, and confocal microscopy.Main Outcome Measure(s)Retroelement expression in human spermatozoa, incorporation of cloned human and mouse active retroelements in human sperm genome, and de novo retrotransposition events in human spermatozoa.Result(s)RT-PCR products of expressed human LINE-1, HERV-K10, and SVA retrotransposons were observed in ejaculated human sperm samples. The incubation of human spermatozoa with either retrotransposition-active human LINE-1 and HERV-K10 or mouse reverse transcriptase–deficient VL30 retrotransposons tagged with an EGFP-based retrotransposition cassette led to EGFP-positive spermatozo; 16.67% of the samples were positive for retrotransposition. The respective retrotransposition frequencies for the LINE-1, HERV-K10, and VL30 retrotransposons in the positive samples were 0.34 ± 0.13%, 0.37 ± 0.17%, and 0.30 ± 0.14% per sample of 10,000 spermatozoa.Conclusion(s)Our results show that: 1) LINE-1, HERV-K10, and SVA retrotransposons are transcriptionally expressed in human spermatozoa; 2) cloned active retroelements of human and mammalian origin can be incorporated in human sperm genome; 3) active reverse transcriptases exist in human spermatozoa; and 4) de novo retrotransposition events occur in human spermatozoa. To investigate the expression of long interspersed element (LINE) 1, human endogenous retrovirus (HERV) K10, and short interspersed element–VNTR–Alu element (SVA) retrotransposons in ejaculated human spermatozoa by means of reverse-transcription (RT) polymerase chain reaction (PCR) analysis as well as the potential incorporation of cloned human and mouse active retroelements in human sperm cell genome. Laboratory study. University research laboratories and academic hospital. Normozoospermic and oligozoospermic white men. RT-PCR analysis was performed to confirm the retrotransposon expression in human spermatozoa. Exogenous retroelements were tagged with a plasmid containing a green fluorescence (EGFP) retrotransposition cassette, and the de novo retrotransposition events were tested with the use of PCR, fluorescence-activated cell sorting analysis, and confocal microscopy. Retroelement expression in human spermatozoa, incorporation of cloned human and mouse active retroelements in human sperm genome, and de novo retrotransposition events in human spermatozoa. RT-PCR products of expressed human LINE-1, HERV-K10, and SVA retrotransposons were observed in ejaculated human sperm samples. The incubation of human spermatozoa with either retrotransposition-active human LINE-1 and HERV-K10 or mouse reverse transcriptase–deficient VL30 retrotransposons tagged with an EGFP-based retrotransposition cassette led to EGFP-positive spermatozo; 16.67% of the samples were positive for retrotransposition. The respective retrotransposition frequencies for the LINE-1, HERV-K10, and VL30 retrotransposons in the positive samples were 0.34 ± 0.13%, 0.37 ± 0.17%, and 0.30 ± 0.14% per sample of 10,000 spermatozoa. Our results show that: 1) LINE-1, HERV-K10, and SVA retrotransposons are transcriptionally expressed in human spermatozoa; 2) cloned active retroelements of human and mammalian origin can be incorporated in human sperm genome; 3) active reverse transcriptases exist in human spermatozoa; and 4) de novo retrotransposition events occur in human spermatozoa." @default.
- W2581774242 created "2017-02-03" @default.
- W2581774242 creator A5006364227 @default.
- W2581774242 creator A5009170565 @default.
- W2581774242 creator A5009394426 @default.
- W2581774242 creator A5010376756 @default.
- W2581774242 creator A5023730868 @default.
- W2581774242 creator A5025876518 @default.
- W2581774242 creator A5039666436 @default.
- W2581774242 creator A5048735621 @default.
- W2581774242 creator A5064700112 @default.
- W2581774242 creator A5085880934 @default.
- W2581774242 creator A5087825685 @default.
- W2581774242 creator A5089221399 @default.
- W2581774242 date "2017-03-01" @default.
- W2581774242 modified "2023-10-18" @default.
- W2581774242 title "Retrotransposon expression and incorporation of cloned human and mouse retroelements in human spermatozoa" @default.
- W2581774242 cites W1964409511 @default.
- W2581774242 cites W1969067527 @default.
- W2581774242 cites W1973879730 @default.
- W2581774242 cites W1974235411 @default.
- W2581774242 cites W1988495745 @default.
- W2581774242 cites W1988704296 @default.
- W2581774242 cites W1989293984 @default.
- W2581774242 cites W1991333931 @default.
- W2581774242 cites W1997561397 @default.
- W2581774242 cites W1999355295 @default.
- W2581774242 cites W2000330841 @default.
- W2581774242 cites W2002190096 @default.
- W2581774242 cites W2003918704 @default.
- W2581774242 cites W2006063808 @default.
- W2581774242 cites W2007589425 @default.
- W2581774242 cites W2018177575 @default.
- W2581774242 cites W2020238969 @default.
- W2581774242 cites W2022452679 @default.
- W2581774242 cites W2023865653 @default.
- W2581774242 cites W2024947462 @default.
- W2581774242 cites W2030496627 @default.
- W2581774242 cites W2032679533 @default.
- W2581774242 cites W2037930474 @default.
- W2581774242 cites W2045302592 @default.
- W2581774242 cites W2045807857 @default.
- W2581774242 cites W2050557699 @default.
- W2581774242 cites W2054020326 @default.
- W2581774242 cites W2058713222 @default.
- W2581774242 cites W2062238129 @default.
- W2581774242 cites W2062250400 @default.
- W2581774242 cites W2064629259 @default.
- W2581774242 cites W2070807615 @default.
- W2581774242 cites W2073035527 @default.
- W2581774242 cites W2082359865 @default.
- W2581774242 cites W2088207658 @default.
- W2581774242 cites W2091279754 @default.
- W2581774242 cites W2091479795 @default.
- W2581774242 cites W2107904521 @default.
- W2581774242 cites W2114037340 @default.
- W2581774242 cites W2114161855 @default.
- W2581774242 cites W2115520939 @default.
- W2581774242 cites W2115924738 @default.
- W2581774242 cites W2123490990 @default.
- W2581774242 cites W2123883764 @default.
- W2581774242 cites W2128879108 @default.
- W2581774242 cites W2136460560 @default.
- W2581774242 cites W2138052059 @default.
- W2581774242 cites W2149962584 @default.
- W2581774242 cites W2150649207 @default.
- W2581774242 cites W2152036273 @default.
- W2581774242 cites W2153586836 @default.
- W2581774242 cites W2154121432 @default.
- W2581774242 cites W2162146849 @default.
- W2581774242 cites W2166993840 @default.
- W2581774242 cites W2168909179 @default.
- W2581774242 cites W2171537206 @default.
- W2581774242 cites W2171727559 @default.
- W2581774242 cites W2222214885 @default.
- W2581774242 cites W2378273478 @default.
- W2581774242 cites W2474005310 @default.
- W2581774242 cites W2484856464 @default.
- W2581774242 cites W4250027855 @default.
- W2581774242 doi "https://doi.org/10.1016/j.fertnstert.2016.12.027" @default.
- W2581774242 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28139237" @default.
- W2581774242 hasPublicationYear "2017" @default.
- W2581774242 type Work @default.
- W2581774242 sameAs 2581774242 @default.
- W2581774242 citedByCount "17" @default.
- W2581774242 countsByYear W25817742422018 @default.
- W2581774242 countsByYear W25817742422020 @default.
- W2581774242 countsByYear W25817742422021 @default.
- W2581774242 countsByYear W25817742422022 @default.
- W2581774242 countsByYear W25817742422023 @default.
- W2581774242 crossrefType "journal-article" @default.
- W2581774242 hasAuthorship W2581774242A5006364227 @default.
- W2581774242 hasAuthorship W2581774242A5009170565 @default.
- W2581774242 hasAuthorship W2581774242A5009394426 @default.
- W2581774242 hasAuthorship W2581774242A5010376756 @default.
- W2581774242 hasAuthorship W2581774242A5023730868 @default.
- W2581774242 hasAuthorship W2581774242A5025876518 @default.
- W2581774242 hasAuthorship W2581774242A5039666436 @default.