Matches in SemOpenAlex for { <https://semopenalex.org/work/W2582156763> ?p ?o ?g. }
- W2582156763 endingPage "1091" @default.
- W2582156763 startingPage "1081" @default.
- W2582156763 abstract "Summary Accurate knowledge of species occurrence is fundamental to a wide variety of ecological, evolutionary and conservation applications. Assessing the presence or absence of species at sites is often complicated by imperfect detection, with different mechanisms potentially contributing to false‐negative and/or false‐positive errors at different sampling stages. Ambiguities in the data mean that estimation of relevant parameters might be confounded unless additional information is available to resolve those uncertainties. Here, we consider the analysis of species detection data with false‐positive and false‐negative errors at multiple levels. We develop and examine a two‐stage occupancy‐detection model for this purpose. We use profile likelihoods for identifiability analysis and estimation, and study the types of additional data required for reliable estimation. We test the model with simulated data, and then analyse data from environmental DNA ( eDNA ) surveys of four Australian frog species. In our case study, we consider that false positives may arise due to contamination at the water sample and quantitative PCR ‐sample levels, whereas false negatives may arise due to eDNA not being captured in a field sample, or due to the sensitivity of laboratory tests. We augment our eDNA survey data with data from aural surveys and laboratory calibration experiments. We demonstrate that the two‐stage model with false‐positive and false‐negative errors is not identifiable if only survey data prone to false positives are available. At least two sources of extra information are required for reliable estimation (e.g. records from a survey method with unambiguous detections, and a calibration experiment). Alternatively, identifiability can be achieved by setting plausible bounds on false detection rates as prior information in a Bayesian setting. The results of our case study matched our simulations with respect to data requirements, and revealed false‐positive rates greater than zero for all species. We provide statistical modelling tools to account for uncertainties in species occurrence survey data when false negatives and false positives could occur at multiple sampling stages. Such data are often needed to support management and policy decisions. Dealing with these uncertainties is relevant for traditional survey methods, but also for promising new techniques, such as eDNA sampling." @default.
- W2582156763 created "2017-02-03" @default.
- W2582156763 creator A5000298000 @default.
- W2582156763 creator A5017430447 @default.
- W2582156763 creator A5069640986 @default.
- W2582156763 creator A5070847668 @default.
- W2582156763 creator A5078906356 @default.
- W2582156763 date "2017-03-22" @default.
- W2582156763 modified "2023-10-15" @default.
- W2582156763 title "Dealing with false‐positive and false‐negative errors about species occurrence at multiple levels" @default.
- W2582156763 cites W1504082918 @default.
- W2582156763 cites W1525998752 @default.
- W2582156763 cites W1876281013 @default.
- W2582156763 cites W2014992919 @default.
- W2582156763 cites W2043180486 @default.
- W2582156763 cites W2052067351 @default.
- W2582156763 cites W2057397238 @default.
- W2582156763 cites W2075319270 @default.
- W2582156763 cites W2079715126 @default.
- W2582156763 cites W2094336924 @default.
- W2582156763 cites W2097966597 @default.
- W2582156763 cites W2106778108 @default.
- W2582156763 cites W2116665868 @default.
- W2582156763 cites W2134012062 @default.
- W2582156763 cites W2142072736 @default.
- W2582156763 cites W2149565239 @default.
- W2582156763 cites W2155187887 @default.
- W2582156763 cites W2157403182 @default.
- W2582156763 cites W2162845717 @default.
- W2582156763 cites W2168164420 @default.
- W2582156763 cites W2176685200 @default.
- W2582156763 cites W2283215574 @default.
- W2582156763 cites W2464745095 @default.
- W2582156763 cites W2500328562 @default.
- W2582156763 cites W4293258535 @default.
- W2582156763 doi "https://doi.org/10.1111/2041-210x.12743" @default.
- W2582156763 hasPublicationYear "2017" @default.
- W2582156763 type Work @default.
- W2582156763 sameAs 2582156763 @default.
- W2582156763 citedByCount "82" @default.
- W2582156763 countsByYear W25821567632017 @default.
- W2582156763 countsByYear W25821567632018 @default.
- W2582156763 countsByYear W25821567632019 @default.
- W2582156763 countsByYear W25821567632020 @default.
- W2582156763 countsByYear W25821567632021 @default.
- W2582156763 countsByYear W25821567632022 @default.
- W2582156763 countsByYear W25821567632023 @default.
- W2582156763 crossrefType "journal-article" @default.
- W2582156763 hasAuthorship W2582156763A5000298000 @default.
- W2582156763 hasAuthorship W2582156763A5017430447 @default.
- W2582156763 hasAuthorship W2582156763A5069640986 @default.
- W2582156763 hasAuthorship W2582156763A5070847668 @default.
- W2582156763 hasAuthorship W2582156763A5078906356 @default.
- W2582156763 hasBestOaLocation W25821567631 @default.
- W2582156763 hasConcept C105795698 @default.
- W2582156763 hasConcept C106131492 @default.
- W2582156763 hasConcept C112789634 @default.
- W2582156763 hasConcept C122770356 @default.
- W2582156763 hasConcept C124101348 @default.
- W2582156763 hasConcept C140779682 @default.
- W2582156763 hasConcept C154945302 @default.
- W2582156763 hasConcept C165838908 @default.
- W2582156763 hasConcept C185592680 @default.
- W2582156763 hasConcept C198531522 @default.
- W2582156763 hasConcept C31972630 @default.
- W2582156763 hasConcept C33923547 @default.
- W2582156763 hasConcept C40696583 @default.
- W2582156763 hasConcept C41008148 @default.
- W2582156763 hasConcept C43617362 @default.
- W2582156763 hasConcept C64869954 @default.
- W2582156763 hasConcept C87007009 @default.
- W2582156763 hasConcept C95922358 @default.
- W2582156763 hasConceptScore W2582156763C105795698 @default.
- W2582156763 hasConceptScore W2582156763C106131492 @default.
- W2582156763 hasConceptScore W2582156763C112789634 @default.
- W2582156763 hasConceptScore W2582156763C122770356 @default.
- W2582156763 hasConceptScore W2582156763C124101348 @default.
- W2582156763 hasConceptScore W2582156763C140779682 @default.
- W2582156763 hasConceptScore W2582156763C154945302 @default.
- W2582156763 hasConceptScore W2582156763C165838908 @default.
- W2582156763 hasConceptScore W2582156763C185592680 @default.
- W2582156763 hasConceptScore W2582156763C198531522 @default.
- W2582156763 hasConceptScore W2582156763C31972630 @default.
- W2582156763 hasConceptScore W2582156763C33923547 @default.
- W2582156763 hasConceptScore W2582156763C40696583 @default.
- W2582156763 hasConceptScore W2582156763C41008148 @default.
- W2582156763 hasConceptScore W2582156763C43617362 @default.
- W2582156763 hasConceptScore W2582156763C64869954 @default.
- W2582156763 hasConceptScore W2582156763C87007009 @default.
- W2582156763 hasConceptScore W2582156763C95922358 @default.
- W2582156763 hasFunder F4320334704 @default.
- W2582156763 hasIssue "9" @default.
- W2582156763 hasLocation W25821567631 @default.
- W2582156763 hasLocation W25821567632 @default.
- W2582156763 hasOpenAccess W2582156763 @default.
- W2582156763 hasPrimaryLocation W25821567631 @default.
- W2582156763 hasRelatedWork W1528798280 @default.
- W2582156763 hasRelatedWork W1557094818 @default.