Matches in SemOpenAlex for { <https://semopenalex.org/work/W2582163918> ?p ?o ?g. }
- W2582163918 endingPage "312" @default.
- W2582163918 startingPage "296" @default.
- W2582163918 abstract "An effective hybrid model is proposed to forecast the short-term wind speed.A new data preprocessing method is put forward.The fuzzy neural network is modified.Three comparative experiments are performed to prove the validity of the hybrid model. Wind speed forecasting plays a pivotal role in power dispatching and normal operations of power grids. However, it is both a difficult and challenging problem to achieve high-precision forecasting for the wind speed because the original sequence includes many nonlinear stochastic signals. The current conventional forecasting methods are more suitable for capturing linear trends, and artificial neural networks easily fall into a local optimum. This paper proposes a model that combines a denoising method with a dynamic fuzzy neural network to address the problems above. Singular spectrum analysis optimized by brain storm optimization is applied to preprocess the original wind speed data to obtain a smoother sequence, and a generalized dynamic fuzzy neural network is utilized to perform the forecasting. With a smaller and simpler structure of the neural network, the model can effectively achieve a rapid learning rate and accurate forecasting. Three experimental results, which cover 10-min, 30-min and 60-min interval wind speed time series data, demonstrate that the model can both satisfactorily approximates the actual value and be used as an effective and simple tool for the planning of smart grids." @default.
- W2582163918 created "2017-02-03" @default.
- W2582163918 creator A5002395986 @default.
- W2582163918 creator A5011809023 @default.
- W2582163918 creator A5060501585 @default.
- W2582163918 date "2017-05-01" @default.
- W2582163918 modified "2023-10-12" @default.
- W2582163918 title "A generalized dynamic fuzzy neural network based on singular spectrum analysis optimized by brain storm optimization for short-term wind speed forecasting" @default.
- W2582163918 cites W1185746543 @default.
- W2582163918 cites W1615826575 @default.
- W2582163918 cites W1720804347 @default.
- W2582163918 cites W1923027492 @default.
- W2582163918 cites W1973778471 @default.
- W2582163918 cites W1975964493 @default.
- W2582163918 cites W1983425265 @default.
- W2582163918 cites W1984061847 @default.
- W2582163918 cites W1987200501 @default.
- W2582163918 cites W1992544936 @default.
- W2582163918 cites W1992885444 @default.
- W2582163918 cites W1993172973 @default.
- W2582163918 cites W1998203213 @default.
- W2582163918 cites W2011630059 @default.
- W2582163918 cites W2013160996 @default.
- W2582163918 cites W2013280094 @default.
- W2582163918 cites W2020560186 @default.
- W2582163918 cites W2021826571 @default.
- W2582163918 cites W2026668451 @default.
- W2582163918 cites W2026674047 @default.
- W2582163918 cites W2027486666 @default.
- W2582163918 cites W2033852689 @default.
- W2582163918 cites W2036028261 @default.
- W2582163918 cites W2044459812 @default.
- W2582163918 cites W2051795269 @default.
- W2582163918 cites W2052429958 @default.
- W2582163918 cites W2056749016 @default.
- W2582163918 cites W2063791237 @default.
- W2582163918 cites W2064748704 @default.
- W2582163918 cites W2066668705 @default.
- W2582163918 cites W2067718885 @default.
- W2582163918 cites W2076579537 @default.
- W2582163918 cites W2078667481 @default.
- W2582163918 cites W2081760759 @default.
- W2582163918 cites W2082535268 @default.
- W2582163918 cites W2084281621 @default.
- W2582163918 cites W2085072334 @default.
- W2582163918 cites W2086639994 @default.
- W2582163918 cites W2094626574 @default.
- W2582163918 cites W2106692210 @default.
- W2582163918 cites W2110060482 @default.
- W2582163918 cites W2111395484 @default.
- W2582163918 cites W2120912971 @default.
- W2582163918 cites W2127192673 @default.
- W2582163918 cites W2128213857 @default.
- W2582163918 cites W2140910096 @default.
- W2582163918 cites W2142809749 @default.
- W2582163918 cites W2164531580 @default.
- W2582163918 cites W2165799067 @default.
- W2582163918 cites W2236744271 @default.
- W2582163918 cites W2268377817 @default.
- W2582163918 cites W2275543810 @default.
- W2582163918 cites W2301106258 @default.
- W2582163918 cites W2314771411 @default.
- W2582163918 cites W2315598830 @default.
- W2582163918 cites W2329476579 @default.
- W2582163918 cites W2344071072 @default.
- W2582163918 cites W2392689491 @default.
- W2582163918 cites W2466975708 @default.
- W2582163918 cites W2468900667 @default.
- W2582163918 cites W2509426069 @default.
- W2582163918 cites W2517007860 @default.
- W2582163918 cites W863118248 @default.
- W2582163918 doi "https://doi.org/10.1016/j.asoc.2017.01.033" @default.
- W2582163918 hasPublicationYear "2017" @default.
- W2582163918 type Work @default.
- W2582163918 sameAs 2582163918 @default.
- W2582163918 citedByCount "164" @default.
- W2582163918 countsByYear W25821639182017 @default.
- W2582163918 countsByYear W25821639182018 @default.
- W2582163918 countsByYear W25821639182019 @default.
- W2582163918 countsByYear W25821639182020 @default.
- W2582163918 countsByYear W25821639182021 @default.
- W2582163918 countsByYear W25821639182022 @default.
- W2582163918 countsByYear W25821639182023 @default.
- W2582163918 crossrefType "journal-article" @default.
- W2582163918 hasAuthorship W2582163918A5002395986 @default.
- W2582163918 hasAuthorship W2582163918A5011809023 @default.
- W2582163918 hasAuthorship W2582163918A5060501585 @default.
- W2582163918 hasConcept C105306849 @default.
- W2582163918 hasConcept C121332964 @default.
- W2582163918 hasConcept C126255220 @default.
- W2582163918 hasConcept C136272165 @default.
- W2582163918 hasConcept C153294291 @default.
- W2582163918 hasConcept C154945302 @default.
- W2582163918 hasConcept C156778621 @default.
- W2582163918 hasConcept C161067210 @default.
- W2582163918 hasConcept C22789450 @default.
- W2582163918 hasConcept C2775924081 @default.
- W2582163918 hasConcept C33923547 @default.