Matches in SemOpenAlex for { <https://semopenalex.org/work/W2582771365> ?p ?o ?g. }
- W2582771365 endingPage "4359" @default.
- W2582771365 startingPage "4346" @default.
- W2582771365 abstract "The objective of this work was to reduce the predictor dimensionality and to develop a model able to forecast contamination in corn silages. A survey on 33 dairy farms was performed, and samples from core, lateral, and apical parts of the feed-out face of corn silage bunkers were analyzed for chemical, biological (digestible and indigestible NDF), fermentative (pH, ammonia nitrogen, lactic acid, VFA, and ethanol), and microbiological (yeasts and molds) traits. Corn silage samples were analyzed for cell and spore counts by adoption of a molecular DNA-based method. A partial least squares (PLS) regression with a leave-one-out cross-validation method was used to reduce the dimensionality of the original predictors ( = 30) by projecting the independent variables into latent constructs. In a first step of the model development, the importance of independent variables in predicting contamination was assessed by plotting factor loadings of both dependent and independent variables on the first 2 components and by verifying for each predictor the variable influence on projection values adopting the Wold's criterion as well as the entity of standardized regression coefficients. Three ensiling characteristics (bunker type, presence of lateral wrap plastic film, and penetration resistance as a measurement of the ensiled mass density), a chemical trait (DM), 9 characterizations of the fermentative profile (pH, ammonia nitrogen, acetic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, ethanol, and lactic acid), and 2 microbiological traits (yeasts and molds) were retained as important terms in the PLS model. Three reduced-variable PLS (rPLS) regressions-the first based on ensiling, chemical, fermentative, and microbiological retained important variables (rPLSecfm); the second based on chemical, fermentative, and microbiological retained important traits (rPLScfm); and the last based on only chemical and fermentative retained important variables (rPLScf)-were performed. The model that best fit the measurements was rPLSecfm. The rPLScfm and rPLScf models had similar regression performances but higher mean square errors of prediction than rPLSecfm. However, all tested models seemed adequate to rank corn silages for low, medium, and high risks of contamination. To avoid the visit on farm by trained people required to measure penetration resistance, the use of the rPLScf model is suggested as a useful tool to assess the risk of in corn silage." @default.
- W2582771365 created "2017-02-03" @default.
- W2582771365 creator A5016406085 @default.
- W2582771365 creator A5035300192 @default.
- W2582771365 creator A5044347105 @default.
- W2582771365 creator A5048465866 @default.
- W2582771365 creator A5055304301 @default.
- W2582771365 creator A5090626214 @default.
- W2582771365 date "2016-10-01" @default.
- W2582771365 modified "2023-09-30" @default.
- W2582771365 title "Relationships among ensiling, nutritional, fermentative, microbiological traits and Clostridium tyrobutyricum contamination in corn silages addressed with partial least squares regression1" @default.
- W2582771365 cites W1423692259 @default.
- W2582771365 cites W1496172797 @default.
- W2582771365 cites W160274581 @default.
- W2582771365 cites W1616810337 @default.
- W2582771365 cites W1753248436 @default.
- W2582771365 cites W1963591659 @default.
- W2582771365 cites W1965231185 @default.
- W2582771365 cites W1968117661 @default.
- W2582771365 cites W1972236634 @default.
- W2582771365 cites W1977110783 @default.
- W2582771365 cites W1977886272 @default.
- W2582771365 cites W1988322995 @default.
- W2582771365 cites W1996129397 @default.
- W2582771365 cites W1997087247 @default.
- W2582771365 cites W2002876782 @default.
- W2582771365 cites W2003939056 @default.
- W2582771365 cites W2008174922 @default.
- W2582771365 cites W2008620700 @default.
- W2582771365 cites W2019495250 @default.
- W2582771365 cites W2033515744 @default.
- W2582771365 cites W2039195959 @default.
- W2582771365 cites W2048629063 @default.
- W2582771365 cites W2050233830 @default.
- W2582771365 cites W2054057151 @default.
- W2582771365 cites W2059576607 @default.
- W2582771365 cites W2066860809 @default.
- W2582771365 cites W2070121477 @default.
- W2582771365 cites W2070700504 @default.
- W2582771365 cites W2071990394 @default.
- W2582771365 cites W2073503722 @default.
- W2582771365 cites W2074244291 @default.
- W2582771365 cites W2074384154 @default.
- W2582771365 cites W2077774021 @default.
- W2582771365 cites W2092337314 @default.
- W2582771365 cites W2099080376 @default.
- W2582771365 cites W2101085650 @default.
- W2582771365 cites W2106824466 @default.
- W2582771365 cites W2115903875 @default.
- W2582771365 cites W2120743290 @default.
- W2582771365 cites W2123083424 @default.
- W2582771365 cites W2124866020 @default.
- W2582771365 cites W2125016052 @default.
- W2582771365 cites W2128702715 @default.
- W2582771365 cites W2129355089 @default.
- W2582771365 cites W2133304401 @default.
- W2582771365 cites W2137225583 @default.
- W2582771365 cites W2144328998 @default.
- W2582771365 cites W2158672154 @default.
- W2582771365 cites W2278519577 @default.
- W2582771365 cites W2309799105 @default.
- W2582771365 cites W2514039001 @default.
- W2582771365 cites W4214736747 @default.
- W2582771365 cites W4323019083 @default.
- W2582771365 cites W850769301 @default.
- W2582771365 doi "https://doi.org/10.2527/jas.2016-0479" @default.
- W2582771365 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/27898868" @default.
- W2582771365 hasPublicationYear "2016" @default.
- W2582771365 type Work @default.
- W2582771365 sameAs 2582771365 @default.
- W2582771365 citedByCount "2" @default.
- W2582771365 countsByYear W25827713652020 @default.
- W2582771365 countsByYear W25827713652023 @default.
- W2582771365 crossrefType "journal-article" @default.
- W2582771365 hasAuthorship W2582771365A5016406085 @default.
- W2582771365 hasAuthorship W2582771365A5035300192 @default.
- W2582771365 hasAuthorship W2582771365A5044347105 @default.
- W2582771365 hasAuthorship W2582771365A5048465866 @default.
- W2582771365 hasAuthorship W2582771365A5055304301 @default.
- W2582771365 hasAuthorship W2582771365A5090626214 @default.
- W2582771365 hasConcept C100544194 @default.
- W2582771365 hasConcept C105795698 @default.
- W2582771365 hasConcept C112570922 @default.
- W2582771365 hasConcept C140793950 @default.
- W2582771365 hasConcept C185592680 @default.
- W2582771365 hasConcept C18903297 @default.
- W2582771365 hasConcept C22354355 @default.
- W2582771365 hasConcept C2775920511 @default.
- W2582771365 hasConcept C2776544680 @default.
- W2582771365 hasConcept C2779843069 @default.
- W2582771365 hasConcept C31903555 @default.
- W2582771365 hasConcept C33923547 @default.
- W2582771365 hasConcept C523546767 @default.
- W2582771365 hasConcept C54355233 @default.
- W2582771365 hasConcept C86803240 @default.
- W2582771365 hasConceptScore W2582771365C100544194 @default.
- W2582771365 hasConceptScore W2582771365C105795698 @default.
- W2582771365 hasConceptScore W2582771365C112570922 @default.