Matches in SemOpenAlex for { <https://semopenalex.org/work/W2583014771> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W2583014771 abstract "In order to cater to modern day photovoltaic and solar needs, semiconductor materials which are earth abundant with a direct bandgap (Eg) around 1.5eV are necessary[1,2] . Of the commonly known semiconductor materials like Si, Ge or binary III-V (Where III = B, A, Ga, In and V = N, P, As, Sb) and II-VI (Where II = Zn, Cd; and VI = O, S, Se, Te), only a few candidates consist of bandgaps which are in the range 1.0–2.0 eV. The requirement for efficient, high quality photovoltaics energy conversion and opto-electronic devices which can be an alternative to the current available semiconductor materials inspires the search for other earth abundant materials [3]. One way to search for these new materials is by studying ternary or multi-ternary semiconductor materials which have more opto-electronic properties.The Zn-IV-N2 group of semiconductor materials has been attracting a lot of attention following the synthesis of Sn containing material, ZnSnN2[4-5]. These novel Zn-IV-N2 group of semiconductor materials can act as a potential earth abundant alternative to InGaN and other thin film solar cell materials such as CdTe and CuInGaSe2 for use in light generation and light absorption applications. For materials such as Zn(Ge,Sn)N2 alloys, absorption edges which are in the range of 2.0 – 3.1eV have been shown already[6]. And an even larger spectral distribution from the infrared region to the ultraviolet region is expected for Zn(Si,Sn)N2 alloys. Even wider spectral coverage from the infrared to the ultraviolet is predicted for Zn(Si,Sn)N2 alloys[7]. Of all the potential options, the ZnSnN2 material exhibits properties such as large optical absorption coefficient and a tunable bandgap range among others that make it a really good potential material as the absorber layer for the next generation PV devices.One of the major challenges facing this material is the discrepancies between the measured and calculated bandgap values. The calculated bandgap values are in the range of 0.35 – 2.64 eV depending on the crystal structure assumed[39] . Whereas the value of the experimental bandgap lies between 1.7 -2.1 eV [40]. One of the reasons for this inability to converge on a bandgap value has been attributed to the bandgap filling due to the degenerate carrier concentration of the material[38] (around 1021 – 1022 per cm-3).In this dissertation, issues related to the carrier concentration in ZnSnN2 material are studied. Most of the work done focuses on efforts to reduce the carrier concentration in ZnSnN2 films to around 1018 per cm-3 range. The growth method used for growing the ZnSnN2 films was RF sputtering using Zn-Sn cathodes containing Zn-Sn in the ratio 3:1. RF Sputtering was chosen because it produces films that are more uniform than the films fabricated using other methods like vapor-liquid-solid plasma assisted growth or CVD[41]. The films were grown on c-plane Sapphire and (0001) GaN substrates. The so obtained films were characterized using X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Hall Effect measurement.The films were later subjected to rapid thermal annealing (RTA) at various temperatures to study the effect of rapidly heating the samples to high temperatures, holding them for a given time and cooling them quickly. The samples subjected to RTA were characterized by XRD, SEM and Hall Effect measurements. The results indicated a significance decrease in the electron concentration of the material after the annealing process which could make ZnSnN2 an interesting alternative as an earth abundant semiconductor material for future absorber layers." @default.
- W2583014771 created "2017-02-03" @default.
- W2583014771 creator A5000626490 @default.
- W2583014771 date "2017-01-01" @default.
- W2583014771 modified "2023-09-27" @default.
- W2583014771 title "Deposition and Characterization of Post-growth annealed ZnSnN 2 thin films" @default.
- W2583014771 hasPublicationYear "2017" @default.
- W2583014771 type Work @default.
- W2583014771 sameAs 2583014771 @default.
- W2583014771 citedByCount "0" @default.
- W2583014771 crossrefType "journal-article" @default.
- W2583014771 hasAuthorship W2583014771A5000626490 @default.
- W2583014771 hasConcept C108225325 @default.
- W2583014771 hasConcept C119599485 @default.
- W2583014771 hasConcept C125287762 @default.
- W2583014771 hasConcept C127413603 @default.
- W2583014771 hasConcept C159985019 @default.
- W2583014771 hasConcept C171250308 @default.
- W2583014771 hasConcept C181966813 @default.
- W2583014771 hasConcept C19067145 @default.
- W2583014771 hasConcept C192562407 @default.
- W2583014771 hasConcept C199360897 @default.
- W2583014771 hasConcept C2780824857 @default.
- W2583014771 hasConcept C2780841128 @default.
- W2583014771 hasConcept C41008148 @default.
- W2583014771 hasConcept C41291067 @default.
- W2583014771 hasConcept C49040817 @default.
- W2583014771 hasConcept C542589376 @default.
- W2583014771 hasConcept C57863236 @default.
- W2583014771 hasConcept C6110044 @default.
- W2583014771 hasConcept C64452783 @default.
- W2583014771 hasConceptScore W2583014771C108225325 @default.
- W2583014771 hasConceptScore W2583014771C119599485 @default.
- W2583014771 hasConceptScore W2583014771C125287762 @default.
- W2583014771 hasConceptScore W2583014771C127413603 @default.
- W2583014771 hasConceptScore W2583014771C159985019 @default.
- W2583014771 hasConceptScore W2583014771C171250308 @default.
- W2583014771 hasConceptScore W2583014771C181966813 @default.
- W2583014771 hasConceptScore W2583014771C19067145 @default.
- W2583014771 hasConceptScore W2583014771C192562407 @default.
- W2583014771 hasConceptScore W2583014771C199360897 @default.
- W2583014771 hasConceptScore W2583014771C2780824857 @default.
- W2583014771 hasConceptScore W2583014771C2780841128 @default.
- W2583014771 hasConceptScore W2583014771C41008148 @default.
- W2583014771 hasConceptScore W2583014771C41291067 @default.
- W2583014771 hasConceptScore W2583014771C49040817 @default.
- W2583014771 hasConceptScore W2583014771C542589376 @default.
- W2583014771 hasConceptScore W2583014771C57863236 @default.
- W2583014771 hasConceptScore W2583014771C6110044 @default.
- W2583014771 hasConceptScore W2583014771C64452783 @default.
- W2583014771 hasLocation W25830147711 @default.
- W2583014771 hasOpenAccess W2583014771 @default.
- W2583014771 hasPrimaryLocation W25830147711 @default.
- W2583014771 hasRelatedWork W2037338233 @default.
- W2583014771 hasRelatedWork W2126055166 @default.
- W2583014771 hasRelatedWork W2165858403 @default.
- W2583014771 hasRelatedWork W2167484022 @default.
- W2583014771 hasRelatedWork W2271961433 @default.
- W2583014771 hasRelatedWork W2296023545 @default.
- W2583014771 hasRelatedWork W27256955 @default.
- W2583014771 hasRelatedWork W2742088586 @default.
- W2583014771 hasRelatedWork W2746465093 @default.
- W2583014771 hasRelatedWork W2767325472 @default.
- W2583014771 hasRelatedWork W2798262292 @default.
- W2583014771 hasRelatedWork W2891686464 @default.
- W2583014771 hasRelatedWork W2993213748 @default.
- W2583014771 hasRelatedWork W3007623203 @default.
- W2583014771 hasRelatedWork W3038096928 @default.
- W2583014771 hasRelatedWork W3093424194 @default.
- W2583014771 hasRelatedWork W3124019572 @default.
- W2583014771 hasRelatedWork W777791500 @default.
- W2583014771 hasRelatedWork W2957120780 @default.
- W2583014771 hasRelatedWork W3088230174 @default.
- W2583014771 isParatext "false" @default.
- W2583014771 isRetracted "false" @default.
- W2583014771 magId "2583014771" @default.
- W2583014771 workType "article" @default.