Matches in SemOpenAlex for { <https://semopenalex.org/work/W2583709825> ?p ?o ?g. }
- W2583709825 endingPage "343" @default.
- W2583709825 startingPage "334" @default.
- W2583709825 abstract "Primary progressive aphasia (PPA) encompasses the three subtypes nonfluent/agrammatic variant PPA, semantic variant PPA, and the logopenic variant PPA, which are characterized by distinct patterns of language difficulties and regional brain atrophy. To validate the potential of structural magnetic resonance imaging data for early individual diagnosis, we used support vector machine classification on grey matter density maps obtained by voxel-based morphometry analysis to discriminate PPA subtypes (44 patients: 16 nonfluent/agrammatic variant PPA, 17 semantic variant PPA, 11 logopenic variant PPA) from 20 healthy controls (matched for sample size, age, and gender) in the cohort of the multi-center study of the German consortium for frontotemporal lobar degeneration. Here, we compared a whole-brain with a meta-analysis-based disease-specific regions-of-interest approach for support vector machine classification. We also used support vector machine classification to discriminate the three PPA subtypes from each other. Whole brain support vector machine classification enabled a very high accuracy between 91 and 97% for identifying specific PPA subtypes vs. healthy controls, and 78/95% for the discrimination between semantic variant vs. nonfluent/agrammatic or logopenic PPA variants. Only for the discrimination between nonfluent/agrammatic and logopenic PPA variants accuracy was low with 55%. Interestingly, the regions that contributed the most to the support vector machine classification of patients corresponded largely to the regions that were atrophic in these patients as revealed by group comparisons. Although the whole brain approach took also into account regions that were not covered in the regions-of-interest approach, both approaches showed similar accuracies due to the disease-specificity of the selected networks. Conclusion, support vector machine classification of multi-center structural magnetic resonance imaging data enables prediction of PPA subtypes with a very high accuracy paving the road for its application in clinical settings." @default.
- W2583709825 created "2017-02-10" @default.
- W2583709825 creator A5008484351 @default.
- W2583709825 creator A5017632965 @default.
- W2583709825 creator A5020478194 @default.
- W2583709825 creator A5021070522 @default.
- W2583709825 creator A5045258788 @default.
- W2583709825 creator A5065253382 @default.
- W2583709825 creator A5067913949 @default.
- W2583709825 creator A5071308068 @default.
- W2583709825 creator A5076331208 @default.
- W2583709825 creator A5077112670 @default.
- W2583709825 creator A5083277637 @default.
- W2583709825 creator A5084389843 @default.
- W2583709825 creator A5084424614 @default.
- W2583709825 creator A5089555874 @default.
- W2583709825 creator A5090410744 @default.
- W2583709825 creator A5091400473 @default.
- W2583709825 date "2017-01-01" @default.
- W2583709825 modified "2023-09-27" @default.
- W2583709825 title "Predicting primary progressive aphasias with support vector machine approaches in structural MRI data" @default.
- W2583709825 cites W1528949696 @default.
- W2583709825 cites W1586285828 @default.
- W2583709825 cites W1965775572 @default.
- W2583709825 cites W1967956494 @default.
- W2583709825 cites W1970283678 @default.
- W2583709825 cites W1971565607 @default.
- W2583709825 cites W1974583546 @default.
- W2583709825 cites W1977257077 @default.
- W2583709825 cites W1984544413 @default.
- W2583709825 cites W1987011701 @default.
- W2583709825 cites W1989274511 @default.
- W2583709825 cites W2001477615 @default.
- W2583709825 cites W2002277005 @default.
- W2583709825 cites W2004421347 @default.
- W2583709825 cites W2012763181 @default.
- W2583709825 cites W2016740629 @default.
- W2583709825 cites W2025233620 @default.
- W2583709825 cites W2033474350 @default.
- W2583709825 cites W2034671208 @default.
- W2583709825 cites W2038003677 @default.
- W2583709825 cites W2040328682 @default.
- W2583709825 cites W2046557060 @default.
- W2583709825 cites W2065127775 @default.
- W2583709825 cites W2067140282 @default.
- W2583709825 cites W2070458400 @default.
- W2583709825 cites W2079073956 @default.
- W2583709825 cites W2079484785 @default.
- W2583709825 cites W2087167911 @default.
- W2583709825 cites W2105037799 @default.
- W2583709825 cites W2107099006 @default.
- W2583709825 cites W2115376139 @default.
- W2583709825 cites W2119848633 @default.
- W2583709825 cites W2120111102 @default.
- W2583709825 cites W2123048267 @default.
- W2583709825 cites W2126693856 @default.
- W2583709825 cites W2128058309 @default.
- W2583709825 cites W2129821250 @default.
- W2583709825 cites W2130888418 @default.
- W2583709825 cites W2138190873 @default.
- W2583709825 cites W2153635508 @default.
- W2583709825 cites W2154633730 @default.
- W2583709825 cites W2155164847 @default.
- W2583709825 cites W2171831801 @default.
- W2583709825 cites W2272468257 @default.
- W2583709825 cites W2283930528 @default.
- W2583709825 cites W2625796101 @default.
- W2583709825 cites W4230920194 @default.
- W2583709825 doi "https://doi.org/10.1016/j.nicl.2017.02.003" @default.
- W2583709825 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5310935" @default.
- W2583709825 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28229040" @default.
- W2583709825 hasPublicationYear "2017" @default.
- W2583709825 type Work @default.
- W2583709825 sameAs 2583709825 @default.
- W2583709825 citedByCount "34" @default.
- W2583709825 countsByYear W25837098252017 @default.
- W2583709825 countsByYear W25837098252018 @default.
- W2583709825 countsByYear W25837098252019 @default.
- W2583709825 countsByYear W25837098252020 @default.
- W2583709825 countsByYear W25837098252021 @default.
- W2583709825 countsByYear W25837098252022 @default.
- W2583709825 countsByYear W25837098252023 @default.
- W2583709825 crossrefType "journal-article" @default.
- W2583709825 hasAuthorship W2583709825A5008484351 @default.
- W2583709825 hasAuthorship W2583709825A5017632965 @default.
- W2583709825 hasAuthorship W2583709825A5020478194 @default.
- W2583709825 hasAuthorship W2583709825A5021070522 @default.
- W2583709825 hasAuthorship W2583709825A5045258788 @default.
- W2583709825 hasAuthorship W2583709825A5065253382 @default.
- W2583709825 hasAuthorship W2583709825A5067913949 @default.
- W2583709825 hasAuthorship W2583709825A5071308068 @default.
- W2583709825 hasAuthorship W2583709825A5076331208 @default.
- W2583709825 hasAuthorship W2583709825A5077112670 @default.
- W2583709825 hasAuthorship W2583709825A5083277637 @default.
- W2583709825 hasAuthorship W2583709825A5084389843 @default.
- W2583709825 hasAuthorship W2583709825A5084424614 @default.
- W2583709825 hasAuthorship W2583709825A5089555874 @default.
- W2583709825 hasAuthorship W2583709825A5090410744 @default.