Matches in SemOpenAlex for { <https://semopenalex.org/work/W2584298695> ?p ?o ?g. }
- W2584298695 endingPage "293" @default.
- W2584298695 startingPage "279" @default.
- W2584298695 abstract "The Discrete Equivalent Wing Crack Damage (DEWCD) model formulated in this paper couples micro-mechanics and Continuum Damage Mechanics (CDM) principles. At the scale of the Representative Elementary Volume (REV), damage is obtained by integrating crack densities over the unit sphere, which represents all possible crack plane orientations. The unit sphere is discretized into 42 integration points. The damage yield criterion is expressed at the microscopic scale: if a crack is in tension, crack growth is controlled by a mode I fracture mechanics criterion; if a crack is in compression, the shear stress that applies at its faces is projected on the directions considered in the numerical integration scheme, and cracks perpendicular to these projected force components grow according to a mode I fracture mechanics criterion. The projection of shear stresses into a set of tensile forces allows predicting the occurrence of wing cracks at the tips of pre-existing defects. We assume that all of the resulting mode I cracks do not interact, and we adopt a dilute homogenization scheme. A hardening law is introduced to account for subcritical crack propagation, and non-associated flow rules are adopted for damage and irreversible strains induced by residual crack displacements after unloading. The DEWCD model depends on only 6 constitutive parameters which all have a sound physical meaning and can be determined by direct measurements in the laboratory. The DEWCD model is calibrated and validated against triaxial compression tests performed on Bakken Shale. In order to highlight the advantages of the DEWCD model over previous anisotropic damage models proposed for rocks, we simulated: (a) A uniaxial tension followed by unloading and reloading in compression; and (b) Uniaxial compression loading cycles of increasing amplitude. We compared the results obtained with the DEWCD model with those obtained with a micro-mechanical model and with a CDM model, both calibrated against the same experimental dataset as the DEWCD model. The three models predict a non linear-stress/strain relationship and damage-induced anisotropy. The micro-mechanical model can capture unilateral effects. The CDM model can capture the occurrence of irreversible strains. The DEWCD model can capture both unilateral effects and irreversible strains. In addition, the DEWCD model can predict the apparent increase of strength and ductility in compression when the confinement increases and the increasing hysteresis on unloading-reloading paths as damage increases. The DEWCD model is the only of the three models tested that provides realistic values of yield stress and strength in tension and compression. This is a significant advancement in the theoretical modeling of brittle solids. Future work will be devoted to the prediction of crack coalescence and to the modeling of the material response with interacting micro-cracks." @default.
- W2584298695 created "2017-02-10" @default.
- W2584298695 creator A5011914997 @default.
- W2584298695 creator A5027004271 @default.
- W2584298695 date "2017-04-01" @default.
- W2584298695 modified "2023-09-23" @default.
- W2584298695 title "Discrete equivalent wing crack based damage model for brittle solids" @default.
- W2584298695 cites W1968511041 @default.
- W2584298695 cites W1973469855 @default.
- W2584298695 cites W1974271158 @default.
- W2584298695 cites W1975221569 @default.
- W2584298695 cites W1980168305 @default.
- W2584298695 cites W1981143293 @default.
- W2584298695 cites W1985872958 @default.
- W2584298695 cites W1986939740 @default.
- W2584298695 cites W1995568763 @default.
- W2584298695 cites W2000196309 @default.
- W2584298695 cites W2002697217 @default.
- W2584298695 cites W2003174275 @default.
- W2584298695 cites W2006757617 @default.
- W2584298695 cites W2011896412 @default.
- W2584298695 cites W2017760285 @default.
- W2584298695 cites W2024403296 @default.
- W2584298695 cites W2027525875 @default.
- W2584298695 cites W2027681027 @default.
- W2584298695 cites W2029525316 @default.
- W2584298695 cites W2032307185 @default.
- W2584298695 cites W2035072927 @default.
- W2584298695 cites W2035327790 @default.
- W2584298695 cites W2041192903 @default.
- W2584298695 cites W2041684917 @default.
- W2584298695 cites W2044159730 @default.
- W2584298695 cites W2047113223 @default.
- W2584298695 cites W2050057527 @default.
- W2584298695 cites W2052815421 @default.
- W2584298695 cites W2057126641 @default.
- W2584298695 cites W2057697531 @default.
- W2584298695 cites W2066886026 @default.
- W2584298695 cites W2073063110 @default.
- W2584298695 cites W2091130152 @default.
- W2584298695 cites W2091630970 @default.
- W2584298695 cites W2095462848 @default.
- W2584298695 cites W2098272641 @default.
- W2584298695 cites W2104694156 @default.
- W2584298695 cites W2123986595 @default.
- W2584298695 cites W2129833201 @default.
- W2584298695 cites W2133363854 @default.
- W2584298695 cites W2135634131 @default.
- W2584298695 cites W2139559979 @default.
- W2584298695 cites W2147714646 @default.
- W2584298695 cites W2152632663 @default.
- W2584298695 cites W2165829988 @default.
- W2584298695 cites W2167731111 @default.
- W2584298695 cites W2272426561 @default.
- W2584298695 cites W2320669821 @default.
- W2584298695 cites W2475618328 @default.
- W2584298695 cites W2525782181 @default.
- W2584298695 cites W4232228172 @default.
- W2584298695 cites W4248795545 @default.
- W2584298695 doi "https://doi.org/10.1016/j.ijsolstr.2016.12.025" @default.
- W2584298695 hasPublicationYear "2017" @default.
- W2584298695 type Work @default.
- W2584298695 sameAs 2584298695 @default.
- W2584298695 citedByCount "16" @default.
- W2584298695 countsByYear W25842986952018 @default.
- W2584298695 countsByYear W25842986952019 @default.
- W2584298695 countsByYear W25842986952020 @default.
- W2584298695 countsByYear W25842986952021 @default.
- W2584298695 countsByYear W25842986952022 @default.
- W2584298695 crossrefType "journal-article" @default.
- W2584298695 hasAuthorship W2584298695A5011914997 @default.
- W2584298695 hasAuthorship W2584298695A5027004271 @default.
- W2584298695 hasBestOaLocation W25842986952 @default.
- W2584298695 hasConcept C101386981 @default.
- W2584298695 hasConcept C121332964 @default.
- W2584298695 hasConcept C127413603 @default.
- W2584298695 hasConcept C131336679 @default.
- W2584298695 hasConcept C135628077 @default.
- W2584298695 hasConcept C159985019 @default.
- W2584298695 hasConcept C192562407 @default.
- W2584298695 hasConcept C2781072879 @default.
- W2584298695 hasConcept C51830879 @default.
- W2584298695 hasConcept C57879066 @default.
- W2584298695 hasConcept C59085676 @default.
- W2584298695 hasConcept C66938386 @default.
- W2584298695 hasConcept C75512024 @default.
- W2584298695 hasConcept C96035792 @default.
- W2584298695 hasConceptScore W2584298695C101386981 @default.
- W2584298695 hasConceptScore W2584298695C121332964 @default.
- W2584298695 hasConceptScore W2584298695C127413603 @default.
- W2584298695 hasConceptScore W2584298695C131336679 @default.
- W2584298695 hasConceptScore W2584298695C135628077 @default.
- W2584298695 hasConceptScore W2584298695C159985019 @default.
- W2584298695 hasConceptScore W2584298695C192562407 @default.
- W2584298695 hasConceptScore W2584298695C2781072879 @default.
- W2584298695 hasConceptScore W2584298695C51830879 @default.
- W2584298695 hasConceptScore W2584298695C57879066 @default.
- W2584298695 hasConceptScore W2584298695C59085676 @default.