Matches in SemOpenAlex for { <https://semopenalex.org/work/W2584534463> ?p ?o ?g. }
- W2584534463 endingPage "5565" @default.
- W2584534463 startingPage "5556" @default.
- W2584534463 abstract "The engineering of broadband absorbers to harvest white light in thin-film semiconductors is a major challenge in developing renewable materials for energy harvesting. Many solution-processed materials with high manufacturability and low cost, such as semiconductor quantum dots, require the use of film structures with thicknesses on the order of 1 μm to absorb incoming photons completely. The electron transport lengths in these media, however, are 1 order of magnitude smaller than this length, hampering further progress with this platform. Herein, we show that, by engineering suitably disordered nanoplasmonic structures, we have created a new class of dispersionless epsilon-near-zero composite materials that efficiently harness white light. Our nanostructures localize light in the dielectric region outside the epsilon-near-zero material with characteristic lengths of 10-100 nm, resulting in an efficient system for harvesting broadband light when a thin absorptive film is deposited on top of the structure. By using a combination of theory and experiments, we demonstrate that ultrathin layers down to 50 nm of colloidal quantum dots deposited atop the epsilon-near-zero material show an increase in broadband absorption ranging from 200% to 500% compared to a planar structure of the same colloidal quantum-dot-absorber average thickness. When the epsilon-near-zero nanostructures were used in an energy-harvesting module, we observed a spectrally averaged 170% broadband increase in the external quantum efficiency of the device, measured at wavelengths between 400 and 1200 nm. Atomic force microscopy and photoluminescence excitation measurements demonstrate that the properties of these epsilon-near-zero structures apply to general metals and could be used to enhance the near-field absorption of semiconductor structures more widely. We have developed an inexpensive electrochemical deposition process that enables scaled-up production of this nanomaterial for large-scale energy-harvesting applications." @default.
- W2584534463 created "2017-02-10" @default.
- W2584534463 creator A5002215332 @default.
- W2584534463 creator A5007567457 @default.
- W2584534463 creator A5011871059 @default.
- W2584534463 creator A5017353282 @default.
- W2584534463 creator A5017444092 @default.
- W2584534463 creator A5023006306 @default.
- W2584534463 creator A5027835055 @default.
- W2584534463 creator A5033082242 @default.
- W2584534463 creator A5035963956 @default.
- W2584534463 creator A5042940413 @default.
- W2584534463 creator A5054680242 @default.
- W2584534463 creator A5061207450 @default.
- W2584534463 creator A5075767125 @default.
- W2584534463 creator A5086304688 @default.
- W2584534463 date "2017-02-03" @default.
- W2584534463 modified "2023-10-02" @default.
- W2584534463 title "Broadband Epsilon-near-Zero Reflectors Enhance the Quantum Efficiency of Thin Solar Cells at Visible and Infrared Wavelengths" @default.
- W2584534463 cites W1520605559 @default.
- W2584534463 cites W1773223001 @default.
- W2584534463 cites W1968433339 @default.
- W2584534463 cites W1974270396 @default.
- W2584534463 cites W1975503010 @default.
- W2584534463 cites W1986922216 @default.
- W2584534463 cites W1987880468 @default.
- W2584534463 cites W1988510032 @default.
- W2584534463 cites W1991387052 @default.
- W2584534463 cites W2008371813 @default.
- W2584534463 cites W2014161704 @default.
- W2584534463 cites W2017179042 @default.
- W2584534463 cites W2018557830 @default.
- W2584534463 cites W2019173492 @default.
- W2584534463 cites W2029637177 @default.
- W2584534463 cites W2030799542 @default.
- W2584534463 cites W2043705208 @default.
- W2584534463 cites W2045931942 @default.
- W2584534463 cites W2048719945 @default.
- W2584534463 cites W2049589172 @default.
- W2584534463 cites W2054592621 @default.
- W2584534463 cites W2058876289 @default.
- W2584534463 cites W2059793273 @default.
- W2584534463 cites W2064187597 @default.
- W2584534463 cites W2066407233 @default.
- W2584534463 cites W2071313040 @default.
- W2584534463 cites W2073085627 @default.
- W2584534463 cites W2073593109 @default.
- W2584534463 cites W2084279813 @default.
- W2584534463 cites W2085827783 @default.
- W2584534463 cites W2089640551 @default.
- W2584534463 cites W2106042645 @default.
- W2584534463 cites W2135115636 @default.
- W2584534463 cites W2138839866 @default.
- W2584534463 cites W2143316096 @default.
- W2584534463 cites W2168602902 @default.
- W2584534463 cites W2170276498 @default.
- W2584534463 cites W2315885645 @default.
- W2584534463 cites W2323227954 @default.
- W2584534463 cites W2385276005 @default.
- W2584534463 cites W4233640895 @default.
- W2584534463 cites W4296862 @default.
- W2584534463 cites W2048377078 @default.
- W2584534463 doi "https://doi.org/10.1021/acsami.6b13713" @default.
- W2584534463 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28156089" @default.
- W2584534463 hasPublicationYear "2017" @default.
- W2584534463 type Work @default.
- W2584534463 sameAs 2584534463 @default.
- W2584534463 citedByCount "23" @default.
- W2584534463 countsByYear W25845344632017 @default.
- W2584534463 countsByYear W25845344632018 @default.
- W2584534463 countsByYear W25845344632019 @default.
- W2584534463 countsByYear W25845344632020 @default.
- W2584534463 countsByYear W25845344632021 @default.
- W2584534463 countsByYear W25845344632022 @default.
- W2584534463 countsByYear W25845344632023 @default.
- W2584534463 crossrefType "journal-article" @default.
- W2584534463 hasAuthorship W2584534463A5002215332 @default.
- W2584534463 hasAuthorship W2584534463A5007567457 @default.
- W2584534463 hasAuthorship W2584534463A5011871059 @default.
- W2584534463 hasAuthorship W2584534463A5017353282 @default.
- W2584534463 hasAuthorship W2584534463A5017444092 @default.
- W2584534463 hasAuthorship W2584534463A5023006306 @default.
- W2584534463 hasAuthorship W2584534463A5027835055 @default.
- W2584534463 hasAuthorship W2584534463A5033082242 @default.
- W2584534463 hasAuthorship W2584534463A5035963956 @default.
- W2584534463 hasAuthorship W2584534463A5042940413 @default.
- W2584534463 hasAuthorship W2584534463A5054680242 @default.
- W2584534463 hasAuthorship W2584534463A5061207450 @default.
- W2584534463 hasAuthorship W2584534463A5075767125 @default.
- W2584534463 hasAuthorship W2584534463A5086304688 @default.
- W2584534463 hasConcept C108225325 @default.
- W2584534463 hasConcept C120665830 @default.
- W2584534463 hasConcept C121332964 @default.
- W2584534463 hasConcept C124657808 @default.
- W2584534463 hasConcept C125287762 @default.
- W2584534463 hasConcept C133386390 @default.
- W2584534463 hasConcept C159985019 @default.
- W2584534463 hasConcept C171250308 @default.