Matches in SemOpenAlex for { <https://semopenalex.org/work/W2584732594> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2584732594 endingPage "1594" @default.
- W2584732594 startingPage "1587" @default.
- W2584732594 abstract "No AccessEngineering NoteTrim Analyses of Mass-Actuated Airplane in Cruise and Steady-State TurnSukru Akif Erturk and Atilla DoganSukru Akif ErturkUniversity of Texas at Arlington, Arlington, Texas 76019*Postdoctoral Researcher, Department of Mechanical and Aerospace Engineering. Student Member AIAA.Search for more papers by this author and Atilla DoganUniversity of Texas at Arlington, Arlington, Texas 76019†Associate Professor, Department of Mechanical and Aerospace Engineering. Associate Fellow AIAA.Search for more papers by this authorPublished Online:31 Jan 2017https://doi.org/10.2514/1.C034200SectionsRead Now ToolsAdd to favoritesDownload citationTrack citations ShareShare onFacebookTwitterLinked InRedditEmail About References [1] Qin L. and Yang M., “Moving Mass Attitude Law Based on Neural Networks,” 2007 International Conference on Machine Learning and Cybernetics, Vol. 5, IEEE, Aug. 2007, pp. 2791–2795. doi:https://doi.org/10.1109/ICMLC.2007.4370622 Google Scholar[2] Rogers J., “Applications of Internal Translating Mass Technologies to Smart Weapons Systems,” Ph.D. Thesis, Georgia Inst. of Technology, Atlanta, GA, Dec. 2009. Google Scholar[3] Petsopoulos T., Regan F. J. and Barlow J., “Moving-Mass Roll Control System for Fixed-Trim Re-Entry Vehicle,” Journal of Spacecraft and Rockets, Vol. 33, No. 1, 1996, pp. 54–60. doi:https://doi.org/10.2514/3.55707 JSCRAG 0022-4650 LinkGoogle Scholar[4] Robinett R. D., Sturgis B. R. and Kerr S. A., “Moving Mass Trim Control for Aerospace Vehicles,” Journal of Guidance, Control, and Dynamics, Vol. 19, No. 5, 1996, pp. 1064–1070. doi:https://doi.org/10.2514/3.21746 JGCODS 0731-5090 LinkGoogle Scholar[5] Chen L., Zhou G., Yan X. J. and Duan D. P., “Composite Control of Stratospheric Airships with Moving Masses,” Journal of Aircraft, Vol. 49, No. 3, 2012, pp. 794–801. doi:https://doi.org/10.2514/1.C031364 LinkGoogle Scholar[6] Okolo W., Dogan A. and Blake W., “Alternate Trimming Methods for Trailing Aircraft in Formation Flight,” Journal of Guidance, Control, and Dynamics, Vol. 38, No. 10, 2015, pp. 2018–2025. doi:https://doi.org/10.2514/1.G000574 JGCODS 0731-5090 LinkGoogle Scholar[7] Collard D., “Concorde Airframe Design and Development,” SAE Transactions, Vol. 100, No. 912162, Sept. 1991, pp. 2620–2641. Google Scholar[8] Orlebar C., The Concorde Story, Osprey Publ., Oxford, U.K., 1997, p. 39. Google Scholar[9] Beyer E. W., “Design, Testing, and Performance of a Hybrid Micro Vehicle—The Hopping Rotochute,” Ph.D. Thesis, Georgia Inst. of Technology, Atlanta, GA, Aug. 2009. Google Scholar[10] Seisan F. Z., “Modeling and Control of a Co-Axial Helicopter,” Ph.D. Thesis, Univ. of Toronto, Toronto, 2012. Google Scholar[11] Vaddi S. S., “Moving Mass Actuated Missile Control Using Convex Optimization Techniques,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2006-6575, Aug. 2006. LinkGoogle Scholar[12] White J. E. and Robinett R. D., “Principal Axis Misalignment Control for Deconing of Spinning Spacecraft,” Journal of Guidance, Control, and Dynamics, Vol. 17, No. 4, 1994, pp. 823–830. doi:https://doi.org/10.2514/3.21272 JGCODS 0731-5090 LinkGoogle Scholar[13] Wie B., Murphy D., Paluszek M. and Thomas S., “Robust Attitude Control Systems Design for Solar Sails, Part 1 Propellantless Primary ACS,” AIAA Guidance, Navigation, and Control Conference and Exhibit, AIAA Paper 2004-5010, Aug. 2004. LinkGoogle Scholar[14] Ahn Y. T., “Attitude Dynamics and Control of a Spacecraft Using Shifting Mass Distribution,” Ph.D. Thesis, Pennsylvania State Univ., University Park, PA, Dec. 2012. Google Scholar[15] Kunciw B. G., “Optimal Detumbling of a Large Manned Spacecraft Using an Internal Moving Mass,” Ph.D. Thesis, Pennsylvania State Univ., University Park, PA, Aug. 1973. Google Scholar[16] Menon P. K., Sweriduk G. D., Ohlmeyer E. J. and Malyevac D. S., “Integrated Guidance and Control of Moving-Mass Actuated Kinetic Warheads,” Journal of Guidance, Control, and Dynamics, Vol. 27, No. 1, 2004, pp. 118–126. doi:https://doi.org/10.2514/1.9336 JGCODS 0731-5090 LinkGoogle Scholar[17] Balaram J., “Sherpa Moving Mass Entry Descent Landing System,” ASME 2005 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, American Soc. of Mechanical Engineers Paper DETC2005-85283, Long Beach, CA, 2005, pp. 63–79. doi:https://doi.org/10.1115/DETC2005-85283 Google Scholar[18] Graver J. G., “Underwater Gliders: Dynamics, Control and Design,” Ph.D. Thesis, Princeton Univ., Princeton, NJ, May 2005. Google Scholar[19] Woolsey C. A. and Leonard N. E., “Moving Mass Control for Underwater Vehicles,” Proceedings of the American Control Conference, IEEE Publ., Piscataway, NJ, 2002, pp. 2824–2829. Google Scholar[20] Vengate S. R., Erturk S. A. and Dogan A., “Development and Flight Test of Moving-Mass Actuated Unmanned Aerial Vehicle,” AIAA Aviation, Atmospheric Flight Mechanics Conference, AIAA Paper 2016-3713, 2016. LinkGoogle Scholar[21] Vengate S. R., “Development and Flight Test of Moving-Mass Actuated Unmanned Aerial Vehicle,” M.S. Thesis, Univ. of Texas at Arlington, Arlington, TX, May 2016. LinkGoogle Scholar[22] Waishek J., Dogan A. and Blake W., “Derivation of the Dynamics Equations of Receiver Aircraft in Aerial Refueling,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 2, 2009, pp. 586–598. doi:https://doi.org/10.2514/1.35892 JGCODS 0731-5090 LinkGoogle Scholar[23] Erturk S. A., “Performance Analysis, Dynamic Simulation and Control of Mass-Actuated Airplane,” Ph.D. Thesis, Univ. of Texas at Arlington, Arlington, TX, Aug. 2016. Google Scholar[24] Paw Y. C., “Synthesis and Validation of Flight Control for UAV,” Ph.D. Thesis, Univ. of Minnesota, Minneapolis, MN, Dec. 2009. Google Scholar Previous article Next article FiguresReferencesRelatedDetailsCited byAttitude Control of a Moving Mass–Actuated UAV Based on Deep Reinforcement LearningJournal of Aerospace Engineering, Vol. 35, No. 2Dynamics and Adaptive Sliding Mode Control of a Mass-Actuated Fixed-Wing UAV5 March 2021 | International Journal of Aeronautical and Space Sciences, Vol. 22, No. 4Modeling and simulation of mass-actuated flexible aircraft for roll controlAerospace Science and Technology, Vol. 107A new deformation control approach for flexible wings using moving massesAerospace Science and Technology, Vol. 106Relative Controllability Evaluation of Mass-Actuated AirplaneSukru Akif Erturk and Atilla Dogan20 December 2018 | Journal of Guidance, Control, and Dynamics, Vol. 42, No. 2 What's Popular Volume 54, Number 4July 2017 CrossmarkInformationCopyright © 2016 by Atilla Dogan. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. All requests for copying and permission to reprint should be submitted to CCC at www.copyright.com; employ the ISSN 0021-8669 (print) or 1533-3868 (online) to initiate your request. See also AIAA Rights and Permissions www.aiaa.org/randp. TopicsAircraft Components and StructureAircraft ControlAircraft DesignAircraft Flight Control SystemAircraft OperationsAircraft Operations and TechnologyAircraft PerformanceAircraft Stability and ControlAircraftsFixed-Wing AircraftFlight Control SurfacesRotorcraftsStealth Aircraft KeywordsAeroplaneControl SurfacesSideslip AngleAircraft ConfigurationsAerodynamic PerformancePitching MomentAircraft SpeedFlight Control SystemFixed Wing AircraftAircraft PerformancePDF Received31 August 2016Accepted21 November 2016Published online31 January 2017" @default.
- W2584732594 created "2017-02-10" @default.
- W2584732594 creator A5048749217 @default.
- W2584732594 creator A5057380934 @default.
- W2584732594 date "2017-07-01" @default.
- W2584732594 modified "2023-10-18" @default.
- W2584732594 title "Trim Analyses of Mass-Actuated Airplane in Cruise and Steady-State Turn" @default.
- W2584732594 cites W1490483494 @default.
- W2584732594 cites W1970599165 @default.
- W2584732594 cites W1977992186 @default.
- W2584732594 cites W1988157107 @default.
- W2584732594 cites W2034541409 @default.
- W2584732594 cites W2083959576 @default.
- W2584732594 cites W2137019908 @default.
- W2584732594 cites W2316685408 @default.
- W2584732594 cites W2330317117 @default.
- W2584732594 cites W2419326350 @default.
- W2584732594 doi "https://doi.org/10.2514/1.c034200" @default.
- W2584732594 hasPublicationYear "2017" @default.
- W2584732594 type Work @default.
- W2584732594 sameAs 2584732594 @default.
- W2584732594 citedByCount "11" @default.
- W2584732594 countsByYear W25847325942019 @default.
- W2584732594 countsByYear W25847325942020 @default.
- W2584732594 countsByYear W25847325942021 @default.
- W2584732594 countsByYear W25847325942022 @default.
- W2584732594 countsByYear W25847325942023 @default.
- W2584732594 crossrefType "journal-article" @default.
- W2584732594 hasAuthorship W2584732594A5048749217 @default.
- W2584732594 hasAuthorship W2584732594A5057380934 @default.
- W2584732594 hasConcept C127413603 @default.
- W2584732594 hasConcept C146978453 @default.
- W2584732594 hasConcept C167740415 @default.
- W2584732594 hasConcept C178802073 @default.
- W2584732594 hasConcept C2778821358 @default.
- W2584732594 hasConceptScore W2584732594C127413603 @default.
- W2584732594 hasConceptScore W2584732594C146978453 @default.
- W2584732594 hasConceptScore W2584732594C167740415 @default.
- W2584732594 hasConceptScore W2584732594C178802073 @default.
- W2584732594 hasConceptScore W2584732594C2778821358 @default.
- W2584732594 hasIssue "4" @default.
- W2584732594 hasLocation W25847325941 @default.
- W2584732594 hasOpenAccess W2584732594 @default.
- W2584732594 hasPrimaryLocation W25847325941 @default.
- W2584732594 hasRelatedWork W1496156702 @default.
- W2584732594 hasRelatedWork W1955884093 @default.
- W2584732594 hasRelatedWork W2040040683 @default.
- W2584732594 hasRelatedWork W291591453 @default.
- W2584732594 hasRelatedWork W2992632572 @default.
- W2584732594 hasRelatedWork W3044511468 @default.
- W2584732594 hasRelatedWork W3173943080 @default.
- W2584732594 hasRelatedWork W4243149247 @default.
- W2584732594 hasRelatedWork W4252062074 @default.
- W2584732594 hasRelatedWork W4309330474 @default.
- W2584732594 hasVolume "54" @default.
- W2584732594 isParatext "false" @default.
- W2584732594 isRetracted "false" @default.
- W2584732594 magId "2584732594" @default.
- W2584732594 workType "article" @default.