Matches in SemOpenAlex for { <https://semopenalex.org/work/W2584890857> ?p ?o ?g. }
- W2584890857 endingPage "46" @default.
- W2584890857 startingPage "37" @default.
- W2584890857 abstract "Purpose At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Methods and Materials Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (−35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. Results IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Conclusions Advanced proton techniques can sufficiently reduce the dose to the vertebral body and allow for vertebral column growth for children with central nervous system tumors requiring CSI. This was true even when considering variable RBE values. A clinical trial is planned for VBS to the thoracic and lumbosacral spine in growing children. At present, proton craniospinal irradiation (CSI) for growing children is delivered to the whole vertebral body (WVB) to avoid asymmetric growth. We aimed to demonstrate the feasibility and potential clinical benefit of delivering vertebral body sparing (VBS) versus WVB CSI with passively scattered (PS) and intensity modulated proton therapy (IMPT) in growing children treated for medulloblastoma. Five plans were generated for medulloblastoma patients, who had been previously treated with CSI PS proton radiation therapy: (1) single posteroanterior (PA) PS field covering the WVB (PS-PA-WVB); (2) single PA PS field that included only the thecal sac in the target volume (PS-PA-VBS); (3) single PA IMPT field covering the WVB (IMPT-PA-WVB); (4) single PA IMPT field, target volume including thecal sac only (IMPT-PA-VBS); and (5) 2 posterior-oblique (−35°, +35°) IMPT fields, with the target volume including the thecal sac only (IMPT2F-VBS). For all cases, 23.4 Gy (relative biologic effectiveness [RBE]) was prescribed to 95% of the spinal canal. The dose, linear energy transfer, and variable-RBE-weighted dose distributions were calculated for all plans using the tool for particle simulation, version 2, Monte Carlo system. IMPT VBS techniques efficiently spared the anterior vertebral bodies (AVBs), even when accounting for potential higher variable RBE predicted by linear energy transfer distributions. Assuming an RBE of 1.1, the V10 Gy(RBE) decreased from 100% for the WVB techniques to 59.5% to 76.8% for the cervical, 29.9% to 34.6% for the thoracic, and 20.6% to 25.1% for the lumbar AVBs, and the V20 Gy(RBE) decreased from 99.0% to 17.8% to 20.0% for the cervical, 7.2% to 7.6% for the thoracic, and 4.0% to 4.6% for the lumbar AVBs when IMPT VBS techniques were applied. The corresponding percentages for the PS VBS technique were higher. Advanced proton techniques can sufficiently reduce the dose to the vertebral body and allow for vertebral column growth for children with central nervous system tumors requiring CSI. This was true even when considering variable RBE values. A clinical trial is planned for VBS to the thoracic and lumbosacral spine in growing children." @default.
- W2584890857 created "2017-02-10" @default.
- W2584890857 creator A5000926307 @default.
- W2584890857 creator A5004971674 @default.
- W2584890857 creator A5014884181 @default.
- W2584890857 creator A5019950679 @default.
- W2584890857 creator A5021753469 @default.
- W2584890857 creator A5037938903 @default.
- W2584890857 creator A5040519062 @default.
- W2584890857 creator A5056658906 @default.
- W2584890857 creator A5072375420 @default.
- W2584890857 creator A5080153222 @default.
- W2584890857 creator A5081318026 @default.
- W2584890857 date "2017-05-01" @default.
- W2584890857 modified "2023-09-26" @default.
- W2584890857 title "Evaluating Intensity Modulated Proton Therapy Relative to Passive Scattering Proton Therapy for Increased Vertebral Column Sparing in Craniospinal Irradiation in Growing Pediatric Patients" @default.
- W2584890857 cites W1485770884 @default.
- W2584890857 cites W1961139212 @default.
- W2584890857 cites W1974274594 @default.
- W2584890857 cites W1983055304 @default.
- W2584890857 cites W1983860046 @default.
- W2584890857 cites W1988966440 @default.
- W2584890857 cites W1990527304 @default.
- W2584890857 cites W1999189079 @default.
- W2584890857 cites W2007176156 @default.
- W2584890857 cites W2014084887 @default.
- W2584890857 cites W2029728138 @default.
- W2584890857 cites W2030544564 @default.
- W2584890857 cites W2030980212 @default.
- W2584890857 cites W2032968239 @default.
- W2584890857 cites W2060127845 @default.
- W2584890857 cites W2060277169 @default.
- W2584890857 cites W2061482861 @default.
- W2584890857 cites W2069769646 @default.
- W2584890857 cites W2078028017 @default.
- W2584890857 cites W2122244986 @default.
- W2584890857 cites W2124143747 @default.
- W2584890857 cites W2139770091 @default.
- W2584890857 cites W2158918353 @default.
- W2584890857 cites W2183101157 @default.
- W2584890857 cites W2287874371 @default.
- W2584890857 cites W2416072758 @default.
- W2584890857 cites W1927575959 @default.
- W2584890857 doi "https://doi.org/10.1016/j.ijrobp.2017.01.226" @default.
- W2584890857 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5466873" @default.
- W2584890857 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28587051" @default.
- W2584890857 hasPublicationYear "2017" @default.
- W2584890857 type Work @default.
- W2584890857 sameAs 2584890857 @default.
- W2584890857 citedByCount "27" @default.
- W2584890857 countsByYear W25848908572018 @default.
- W2584890857 countsByYear W25848908572019 @default.
- W2584890857 countsByYear W25848908572020 @default.
- W2584890857 countsByYear W25848908572021 @default.
- W2584890857 countsByYear W25848908572022 @default.
- W2584890857 countsByYear W25848908572023 @default.
- W2584890857 crossrefType "journal-article" @default.
- W2584890857 hasAuthorship W2584890857A5000926307 @default.
- W2584890857 hasAuthorship W2584890857A5004971674 @default.
- W2584890857 hasAuthorship W2584890857A5014884181 @default.
- W2584890857 hasAuthorship W2584890857A5019950679 @default.
- W2584890857 hasAuthorship W2584890857A5021753469 @default.
- W2584890857 hasAuthorship W2584890857A5037938903 @default.
- W2584890857 hasAuthorship W2584890857A5040519062 @default.
- W2584890857 hasAuthorship W2584890857A5056658906 @default.
- W2584890857 hasAuthorship W2584890857A5072375420 @default.
- W2584890857 hasAuthorship W2584890857A5080153222 @default.
- W2584890857 hasAuthorship W2584890857A5081318026 @default.
- W2584890857 hasBestOaLocation W25848908572 @default.
- W2584890857 hasConcept C111337013 @default.
- W2584890857 hasConcept C118552586 @default.
- W2584890857 hasConcept C11928243 @default.
- W2584890857 hasConcept C120665830 @default.
- W2584890857 hasConcept C121332964 @default.
- W2584890857 hasConcept C126838900 @default.
- W2584890857 hasConcept C142724271 @default.
- W2584890857 hasConcept C185544564 @default.
- W2584890857 hasConcept C2779244869 @default.
- W2584890857 hasConcept C2779326565 @default.
- W2584890857 hasConcept C2780775167 @default.
- W2584890857 hasConcept C2780789225 @default.
- W2584890857 hasConcept C2989005 @default.
- W2584890857 hasConcept C509974204 @default.
- W2584890857 hasConcept C54516573 @default.
- W2584890857 hasConcept C71924100 @default.
- W2584890857 hasConcept C86611320 @default.
- W2584890857 hasConcept C93038891 @default.
- W2584890857 hasConceptScore W2584890857C111337013 @default.
- W2584890857 hasConceptScore W2584890857C118552586 @default.
- W2584890857 hasConceptScore W2584890857C11928243 @default.
- W2584890857 hasConceptScore W2584890857C120665830 @default.
- W2584890857 hasConceptScore W2584890857C121332964 @default.
- W2584890857 hasConceptScore W2584890857C126838900 @default.
- W2584890857 hasConceptScore W2584890857C142724271 @default.
- W2584890857 hasConceptScore W2584890857C185544564 @default.
- W2584890857 hasConceptScore W2584890857C2779244869 @default.
- W2584890857 hasConceptScore W2584890857C2779326565 @default.
- W2584890857 hasConceptScore W2584890857C2780775167 @default.