Matches in SemOpenAlex for { <https://semopenalex.org/work/W2584931243> ?p ?o ?g. }
- W2584931243 endingPage "598" @default.
- W2584931243 startingPage "585" @default.
- W2584931243 abstract "When conducting longitudinal research, the investigation of between-individual differences in patterns of within-individual change can provide important insights. In this article, we use simulation methods to investigate the performance of a model-based exploratory data mining technique—structural equation model trees (SEM trees; Brandmaier, Oertzen, McArdle, & Lindenberger, 2013)—as a tool for detecting population heterogeneity. We use a latent-change score model as a data generation model and manipulate the precision of the information provided by a covariate about the true latent profile as well as other factors, including sample size, under the possible influences of model misspecifications. Simulation results show that, compared with latent growth curve mixture models, SEM trees might be very sensitive to model misspecification in estimating the number of classes. This can be attributed to the lower statistical power in identifying classes, resulting from smaller differences of parameters prescribed by the template model between classes." @default.
- W2584931243 created "2017-02-10" @default.
- W2584931243 creator A5012865631 @default.
- W2584931243 creator A5057250289 @default.
- W2584931243 creator A5071409343 @default.
- W2584931243 date "2017-01-31" @default.
- W2584931243 modified "2023-10-13" @default.
- W2584931243 title "Fitting Structural Equation Model Trees and Latent Growth Curve Mixture Models in Longitudinal Designs: The Influence of Model Misspecification" @default.
- W2584931243 cites W130596010 @default.
- W2584931243 cites W1482639564 @default.
- W2584931243 cites W1519488069 @default.
- W2584931243 cites W1574731306 @default.
- W2584931243 cites W1594078756 @default.
- W2584931243 cites W1664685227 @default.
- W2584931243 cites W1913957972 @default.
- W2584931243 cites W1974198014 @default.
- W2584931243 cites W1985321835 @default.
- W2584931243 cites W1990351156 @default.
- W2584931243 cites W2003471423 @default.
- W2584931243 cites W2003885756 @default.
- W2584931243 cites W2019448438 @default.
- W2584931243 cites W2020559865 @default.
- W2584931243 cites W2022306341 @default.
- W2584931243 cites W2035886438 @default.
- W2584931243 cites W2044579390 @default.
- W2584931243 cites W2049633694 @default.
- W2584931243 cites W2057930812 @default.
- W2584931243 cites W2072221629 @default.
- W2584931243 cites W2074345255 @default.
- W2584931243 cites W2080134433 @default.
- W2584931243 cites W2090330784 @default.
- W2584931243 cites W2091468128 @default.
- W2584931243 cites W2102651926 @default.
- W2584931243 cites W2119672929 @default.
- W2584931243 cites W2121236536 @default.
- W2584931243 cites W2121297553 @default.
- W2584931243 cites W2126365559 @default.
- W2584931243 cites W2128815926 @default.
- W2584931243 cites W2154732345 @default.
- W2584931243 cites W2156267802 @default.
- W2584931243 cites W2168175751 @default.
- W2584931243 cites W2208749118 @default.
- W2584931243 cites W2285822493 @default.
- W2584931243 cites W2418698374 @default.
- W2584931243 cites W2480680997 @default.
- W2584931243 cites W2488678869 @default.
- W2584931243 cites W2502938733 @default.
- W2584931243 cites W3083380400 @default.
- W2584931243 cites W4248455063 @default.
- W2584931243 doi "https://doi.org/10.1080/10705511.2016.1266267" @default.
- W2584931243 hasPublicationYear "2017" @default.
- W2584931243 type Work @default.
- W2584931243 sameAs 2584931243 @default.
- W2584931243 citedByCount "11" @default.
- W2584931243 countsByYear W25849312432018 @default.
- W2584931243 countsByYear W25849312432019 @default.
- W2584931243 countsByYear W25849312432020 @default.
- W2584931243 countsByYear W25849312432021 @default.
- W2584931243 countsByYear W25849312432023 @default.
- W2584931243 crossrefType "journal-article" @default.
- W2584931243 hasAuthorship W2584931243A5012865631 @default.
- W2584931243 hasAuthorship W2584931243A5057250289 @default.
- W2584931243 hasAuthorship W2584931243A5071409343 @default.
- W2584931243 hasConcept C105795698 @default.
- W2584931243 hasConcept C111472728 @default.
- W2584931243 hasConcept C114289077 @default.
- W2584931243 hasConcept C119043178 @default.
- W2584931243 hasConcept C129848803 @default.
- W2584931243 hasConcept C132480984 @default.
- W2584931243 hasConcept C138885662 @default.
- W2584931243 hasConcept C149782125 @default.
- W2584931243 hasConcept C192806908 @default.
- W2584931243 hasConcept C2776913854 @default.
- W2584931243 hasConcept C2778136018 @default.
- W2584931243 hasConcept C33923547 @default.
- W2584931243 hasConcept C41008148 @default.
- W2584931243 hasConcept C51167844 @default.
- W2584931243 hasConcept C61224824 @default.
- W2584931243 hasConcept C65965080 @default.
- W2584931243 hasConcept C71104824 @default.
- W2584931243 hasConceptScore W2584931243C105795698 @default.
- W2584931243 hasConceptScore W2584931243C111472728 @default.
- W2584931243 hasConceptScore W2584931243C114289077 @default.
- W2584931243 hasConceptScore W2584931243C119043178 @default.
- W2584931243 hasConceptScore W2584931243C129848803 @default.
- W2584931243 hasConceptScore W2584931243C132480984 @default.
- W2584931243 hasConceptScore W2584931243C138885662 @default.
- W2584931243 hasConceptScore W2584931243C149782125 @default.
- W2584931243 hasConceptScore W2584931243C192806908 @default.
- W2584931243 hasConceptScore W2584931243C2776913854 @default.
- W2584931243 hasConceptScore W2584931243C2778136018 @default.
- W2584931243 hasConceptScore W2584931243C33923547 @default.
- W2584931243 hasConceptScore W2584931243C41008148 @default.
- W2584931243 hasConceptScore W2584931243C51167844 @default.
- W2584931243 hasConceptScore W2584931243C61224824 @default.
- W2584931243 hasConceptScore W2584931243C65965080 @default.
- W2584931243 hasConceptScore W2584931243C71104824 @default.
- W2584931243 hasFunder F4320334764 @default.