Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585013038> ?p ?o ?g. }
- W2585013038 endingPage "553" @default.
- W2585013038 startingPage "552" @default.
- W2585013038 abstract "The image intensity in high‐angle annular dark field STEM images shows a strong chemical sensitivity. As it is also influenced by specimen thickness, crystal orientation as well as characteristics of illumination and detector, a standard‐free quantification of composition requires a comparison with accurate image simulation, for which we use the frozen lattice approach of the STEMsim program taking the non‐uniform detector sensitivity into account. The experimental STEM intensity is normalized with respect to the incident electron beam. For the quantification of a STEM image it is subdivided into Voronoi cells in which the intensity is averaged. Analysis of the composition in a ternary semiconductor layer such as In x Ga 1‐x N requires measuring the specimen thickness in regions with known composition by comparison with the simulated STEM intensity. Interpolation of the obtained thickness into the layer with unknown composition yields a map of the specimen thickness. Finally, specimen thickness and STEM intensity are compared with simulations computed as a function of composition resulting in a map of the In‐concentration x . In alloys containing atoms with different covalent radii (e.g. In and Ga in In x Ga 1‐x N) static atomic displacements occur, which are computed with empirical potentials and included in the simulation. As an application example Fig. 1a shows an array of core‐shell nanowires. One single nanowire is depicted in Fig. 1b. The core‐shell area marked by a yellow frame is shown in Fig. 1c. Figs. 1d and 1f show high‐resolution STEM images of the core‐shell regions corresponding to the top and the bottom of a nanowire, respectively. The maps of the measured In‐concentration given in Figs. 1e and 1g reveal an increasing thickness of the layer along the growth direction. In the upper part, the layer shows variations of the In‐concentration clearly beyond the random‐array fluctuations as was shown by a comparison with image simulation. In the second part of the talk we present results on measurements of atomic electric fields. Differential phase contrast STEM detects the field‐induced angular deflection of the electron beam with a segmented ring detector (J. Chapman et al., Ultramicroscopy 3 (1978), 203) assuming that the Ronchigram is homogeneously filled and shifted as a whole in the presence of electromagnetic fields (N. Shibata et al., Nat. Phys. 8 (2012), 611). These assumptions were tested by simulation for 1.3 nm thick GaN. Fig. 2b shows Ronchigrams simulated for 6x6 scan positions within the region marked in Fig. 2a. The dominant effect of the atomic electric field is a complex redistribution of intensity within a Ronchigram. By fundamental quantum mechanical arguments, we take the complex intensity distribution in the Ronchigram into account (K. Müller et al., Nat. Commun. 5 (2014), 5653). The intensity in a certain pixel of the recorded Ronchigram is proportional to the probability that the corresponding momentum is observed. Thus, a center‐of‐gravity type summation yields the expectation value for the momentum. To relate the electric field in the specimen to the observed momentum transfer, Ehrenfest's theorem is applied. For thin specimens, the expectation value of the momentum is found to be proportional to the projection of the electric field along the optical axis, convolved with the intensity distribution of the incident STEM probe. We demonstrate the potential of this approach in both simulation and experiment. For the GaN simulation in Fig. 2c we find the electric field depicted in Fig. 2d. Atomic sites appear as sources of the field which has a magnitude of up to 1.5 V/pm. As only the convolution of the true field with the probe intensity can be measured, the field strength decreases in the direct vicinity of atomic sites. In a first experiment, 20x20 Ronchigrams of SrTiO 3 with a thickness of 2.5 nm have been recorded on a conventional charge‐coupled device (CCD), yielding the electric field in Fig. 2e. We also report on pilot experiments with the ultrafast pnCCD camera (K. Müller et al., Appl. Phys. Lett. 101 (2012), 212110) which was operated at read‐out rates of up to 4 kHz. For example, Fig. 2f shows the momentum transfers recorded at a MoS 2 mono/bilayer interface, demonstrating that fast detectors are the key for atomic‐scale materials analyses at a reasonable field of view." @default.
- W2585013038 created "2017-02-10" @default.
- W2585013038 creator A5001419976 @default.
- W2585013038 creator A5004678380 @default.
- W2585013038 creator A5008168137 @default.
- W2585013038 creator A5017597907 @default.
- W2585013038 creator A5020773202 @default.
- W2585013038 creator A5022183956 @default.
- W2585013038 creator A5023673120 @default.
- W2585013038 creator A5035170244 @default.
- W2585013038 creator A5036971197 @default.
- W2585013038 creator A5037077922 @default.
- W2585013038 creator A5039818381 @default.
- W2585013038 creator A5045487438 @default.
- W2585013038 creator A5048030604 @default.
- W2585013038 creator A5052013895 @default.
- W2585013038 creator A5055070903 @default.
- W2585013038 creator A5063433012 @default.
- W2585013038 creator A5065706302 @default.
- W2585013038 creator A5070391631 @default.
- W2585013038 creator A5075491331 @default.
- W2585013038 creator A5077105365 @default.
- W2585013038 creator A5082253779 @default.
- W2585013038 date "2016-12-20" @default.
- W2585013038 modified "2023-09-24" @default.
- W2585013038 title "Quantitative STEM - From composition to atomic electric fields" @default.
- W2585013038 doi "https://doi.org/10.1002/9783527808465.emc2016.8302" @default.
- W2585013038 hasPublicationYear "2016" @default.
- W2585013038 type Work @default.
- W2585013038 sameAs 2585013038 @default.
- W2585013038 citedByCount "0" @default.
- W2585013038 crossrefType "other" @default.
- W2585013038 hasAuthorship W2585013038A5001419976 @default.
- W2585013038 hasAuthorship W2585013038A5004678380 @default.
- W2585013038 hasAuthorship W2585013038A5008168137 @default.
- W2585013038 hasAuthorship W2585013038A5017597907 @default.
- W2585013038 hasAuthorship W2585013038A5020773202 @default.
- W2585013038 hasAuthorship W2585013038A5022183956 @default.
- W2585013038 hasAuthorship W2585013038A5023673120 @default.
- W2585013038 hasAuthorship W2585013038A5035170244 @default.
- W2585013038 hasAuthorship W2585013038A5036971197 @default.
- W2585013038 hasAuthorship W2585013038A5037077922 @default.
- W2585013038 hasAuthorship W2585013038A5039818381 @default.
- W2585013038 hasAuthorship W2585013038A5045487438 @default.
- W2585013038 hasAuthorship W2585013038A5048030604 @default.
- W2585013038 hasAuthorship W2585013038A5052013895 @default.
- W2585013038 hasAuthorship W2585013038A5055070903 @default.
- W2585013038 hasAuthorship W2585013038A5063433012 @default.
- W2585013038 hasAuthorship W2585013038A5065706302 @default.
- W2585013038 hasAuthorship W2585013038A5070391631 @default.
- W2585013038 hasAuthorship W2585013038A5075491331 @default.
- W2585013038 hasAuthorship W2585013038A5077105365 @default.
- W2585013038 hasAuthorship W2585013038A5082253779 @default.
- W2585013038 hasBestOaLocation W25850130381 @default.
- W2585013038 hasConcept C120665830 @default.
- W2585013038 hasConcept C121332964 @default.
- W2585013038 hasConcept C171250308 @default.
- W2585013038 hasConcept C192562407 @default.
- W2585013038 hasConcept C193016168 @default.
- W2585013038 hasConcept C199360897 @default.
- W2585013038 hasConcept C207114421 @default.
- W2585013038 hasConcept C24890656 @default.
- W2585013038 hasConcept C2781204021 @default.
- W2585013038 hasConcept C41008148 @default.
- W2585013038 hasConcept C41999313 @default.
- W2585013038 hasConcept C64452783 @default.
- W2585013038 hasConcept C74214498 @default.
- W2585013038 hasConcept C93038891 @default.
- W2585013038 hasConcept C93877712 @default.
- W2585013038 hasConcept C94915269 @default.
- W2585013038 hasConceptScore W2585013038C120665830 @default.
- W2585013038 hasConceptScore W2585013038C121332964 @default.
- W2585013038 hasConceptScore W2585013038C171250308 @default.
- W2585013038 hasConceptScore W2585013038C192562407 @default.
- W2585013038 hasConceptScore W2585013038C193016168 @default.
- W2585013038 hasConceptScore W2585013038C199360897 @default.
- W2585013038 hasConceptScore W2585013038C207114421 @default.
- W2585013038 hasConceptScore W2585013038C24890656 @default.
- W2585013038 hasConceptScore W2585013038C2781204021 @default.
- W2585013038 hasConceptScore W2585013038C41008148 @default.
- W2585013038 hasConceptScore W2585013038C41999313 @default.
- W2585013038 hasConceptScore W2585013038C64452783 @default.
- W2585013038 hasConceptScore W2585013038C74214498 @default.
- W2585013038 hasConceptScore W2585013038C93038891 @default.
- W2585013038 hasConceptScore W2585013038C93877712 @default.
- W2585013038 hasConceptScore W2585013038C94915269 @default.
- W2585013038 hasLocation W25850130381 @default.
- W2585013038 hasOpenAccess W2585013038 @default.
- W2585013038 hasPrimaryLocation W25850130381 @default.
- W2585013038 hasRelatedWork W1966077344 @default.
- W2585013038 hasRelatedWork W2000403559 @default.
- W2585013038 hasRelatedWork W2044585362 @default.
- W2585013038 hasRelatedWork W2055171879 @default.
- W2585013038 hasRelatedWork W2064285767 @default.
- W2585013038 hasRelatedWork W2301896672 @default.
- W2585013038 hasRelatedWork W2315812898 @default.
- W2585013038 hasRelatedWork W2738025024 @default.
- W2585013038 hasRelatedWork W2886392098 @default.