Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585140187> ?p ?o ?g. }
- W2585140187 endingPage "204" @default.
- W2585140187 startingPage "179" @default.
- W2585140187 abstract "Over the past few decades several studies have reported that pyrite hosts appreciable amounts of trace elements which commonly occur forming complex zoning patterns within a single mineral grain. These chemical zonations in pyrite have been recognized in a variety of hydrothermal ore deposit types (e.g., porphyry Cu–Mo–Au, epithermal Au deposits, iron oxide–copper–gold, Carlin-type and Archean lode Au deposits, among others), showing, in some cases, marked oscillatory alternation of metals and metalloids in pyrite growth zones (e.g., of Cu-rich, As–(Au, Ag)-depleted zones and As–(Au, Ag)-rich, Cu-depleted zones). This decoupled geochemical behavior of Cu and As has been interpreted as a result of chemical changes in ore-forming fluids, although direct evidence connecting fluctuations in hydrothermal fluid composition with metal partitioning into pyrite growth zones is still lacking. In this study, we report a comprehensive trace element database of pyrite from the Tolhuaca Geothermal System (TGS) in southern Chile, a young and active hydrothermal system where fewer pyrite growth rims and mineralization events are present and the reservoir fluid (i.e. ore-forming fluid) is accessible. We combined the high-spatial resolution and X-ray mapping capabilities of electron microprobe analysis (EMPA) with low detection limits and depth-profiling capacity of secondary-ion mass spectrometry (SIMS) in a suite of pyrite samples retrieved from a ∼1 km drill hole that crosses the argillic (20–450 m) and propylitic (650–1000 m) alteration zones of the geothermal system. We show that the concentrations of precious metals (e.g., Au, Ag), metalloids (e.g., As, Sb, Se, Te), and base and heavy metals (e.g., Cu, Co, Ni, Pb) in pyrite at the TGS are significant. Among the elements analyzed, As and Cu are the most abundant with concentrations that vary from sub-ppm levels to a few wt.% (i.e., up to ∼5 wt.% As, ∼1.5 wt.% Cu). Detailed wavelength-dispersive spectrometry (WDS) X-ray maps and SIMS depth vs. isotope concentration profiles reveal that pyrites from the TGS are characterized by chemical zoning where the studied elements occur in different mineralogical forms. Arsenic and Co occur as structurally bound elements in pyrite, Cu and Au in pyrite can occur as both solid solution and submicron-sized particles of chalcopyrite and native Au (or Au tellurides), respectively. Pyrites from the deeper propylitic zone do not show significant zonation and high Cu–(Co)–As concentrations correlate with each other. In contrast, well-developed zonations were detected in pyrite from the shallow argillic alteration zone, where Cu(Co)-rich, As-depleted cores alternate with Cu(Co)-depleted, As-rich rims. These microanalytical data were contrasted with chemical data of fluid inclusions in quartz and calcite veins (high Cu/As ratios) and borehole fluid (low Cu/As ratios) reported at the TGS, showing a clear correspondence between Cu and As concentrations in pyrite-forming fluids and chemical zonation in pyrite. These observations provide direct evidence supporting the selective partitioning of metals into pyrite as a result of changes in ore-forming fluid composition, most likely due to separation of a single-phase fluid into a low-density vapor and a denser brine, capable of fractionating Cu and As." @default.
- W2585140187 created "2017-02-10" @default.
- W2585140187 creator A5021670694 @default.
- W2585140187 creator A5030224049 @default.
- W2585140187 creator A5034850692 @default.
- W2585140187 creator A5048629828 @default.
- W2585140187 creator A5056102872 @default.
- W2585140187 creator A5062068397 @default.
- W2585140187 creator A5090182280 @default.
- W2585140187 date "2017-05-01" @default.
- W2585140187 modified "2023-10-11" @default.
- W2585140187 title "Copper–arsenic decoupling in an active geothermal system: A link between pyrite and fluid composition" @default.
- W2585140187 cites W1183389655 @default.
- W2585140187 cites W1646882075 @default.
- W2585140187 cites W1741036605 @default.
- W2585140187 cites W1963974986 @default.
- W2585140187 cites W1965744338 @default.
- W2585140187 cites W1969023317 @default.
- W2585140187 cites W1969725957 @default.
- W2585140187 cites W1976348616 @default.
- W2585140187 cites W1976819346 @default.
- W2585140187 cites W1977639716 @default.
- W2585140187 cites W1981061035 @default.
- W2585140187 cites W1989989545 @default.
- W2585140187 cites W2008575948 @default.
- W2585140187 cites W2009958649 @default.
- W2585140187 cites W2012179736 @default.
- W2585140187 cites W2012267808 @default.
- W2585140187 cites W2014677728 @default.
- W2585140187 cites W2017770619 @default.
- W2585140187 cites W2018093298 @default.
- W2585140187 cites W2018456659 @default.
- W2585140187 cites W2019501187 @default.
- W2585140187 cites W2025624557 @default.
- W2585140187 cites W2028912962 @default.
- W2585140187 cites W2031359426 @default.
- W2585140187 cites W2034887466 @default.
- W2585140187 cites W2042221220 @default.
- W2585140187 cites W2044224264 @default.
- W2585140187 cites W2047092359 @default.
- W2585140187 cites W2049153634 @default.
- W2585140187 cites W2049913504 @default.
- W2585140187 cites W2051323905 @default.
- W2585140187 cites W2053022150 @default.
- W2585140187 cites W2058604980 @default.
- W2585140187 cites W2061785747 @default.
- W2585140187 cites W2062468006 @default.
- W2585140187 cites W2064275717 @default.
- W2585140187 cites W2065035111 @default.
- W2585140187 cites W2067309114 @default.
- W2585140187 cites W2082740169 @default.
- W2585140187 cites W2088096040 @default.
- W2585140187 cites W2092156812 @default.
- W2585140187 cites W2092788972 @default.
- W2585140187 cites W2097106504 @default.
- W2585140187 cites W2107518652 @default.
- W2585140187 cites W2108353466 @default.
- W2585140187 cites W2108740208 @default.
- W2585140187 cites W2110506335 @default.
- W2585140187 cites W2110799222 @default.
- W2585140187 cites W2123826066 @default.
- W2585140187 cites W2127889406 @default.
- W2585140187 cites W2133057549 @default.
- W2585140187 cites W2138167154 @default.
- W2585140187 cites W2143035384 @default.
- W2585140187 cites W2144277007 @default.
- W2585140187 cites W2148016883 @default.
- W2585140187 cites W2153000470 @default.
- W2585140187 cites W2154295153 @default.
- W2585140187 cites W2154506653 @default.
- W2585140187 cites W2159347349 @default.
- W2585140187 cites W2165771317 @default.
- W2585140187 cites W2179717054 @default.
- W2585140187 cites W2198287087 @default.
- W2585140187 cites W2211560325 @default.
- W2585140187 cites W2332269795 @default.
- W2585140187 cites W2336300744 @default.
- W2585140187 cites W2340517067 @default.
- W2585140187 cites W2345413594 @default.
- W2585140187 cites W2349646370 @default.
- W2585140187 cites W2407590321 @default.
- W2585140187 cites W2414500733 @default.
- W2585140187 cites W2437646202 @default.
- W2585140187 cites W2514781466 @default.
- W2585140187 cites W2535494989 @default.
- W2585140187 cites W4232343057 @default.
- W2585140187 doi "https://doi.org/10.1016/j.gca.2017.01.044" @default.
- W2585140187 hasPublicationYear "2017" @default.
- W2585140187 type Work @default.
- W2585140187 sameAs 2585140187 @default.
- W2585140187 citedByCount "84" @default.
- W2585140187 countsByYear W25851401872017 @default.
- W2585140187 countsByYear W25851401872018 @default.
- W2585140187 countsByYear W25851401872019 @default.
- W2585140187 countsByYear W25851401872020 @default.
- W2585140187 countsByYear W25851401872021 @default.
- W2585140187 countsByYear W25851401872022 @default.
- W2585140187 countsByYear W25851401872023 @default.