Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585282541> ?p ?o ?g. }
- W2585282541 endingPage "11" @default.
- W2585282541 startingPage "1" @default.
- W2585282541 abstract "Abstract Mapping crop types is of great importance for assessing agricultural production, land-use patterns, and the environmental effects of agriculture. Indeed, both radiometric and spatial resolution of Landsat’s sensors images are optimized for cropland monitoring. However, accurate mapping of crop types requires frequent cloud-free images during the growing season, which are often not available, and this raises the question of whether Landsat data can be combined with data from other satellites. Here, our goal is to evaluate to what degree fusing Landsat with MODIS Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted Reflectance (NBAR) data can improve crop-type classification. Choosing either one or two images from all cloud-free Landsat observations available for the Arlington Agricultural Research Station area in Wisconsin from 2010 to 2014, we generated 87 combinations of images, and used each combination as input into the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) algorithm to predict Landsat-like images at the nominal dates of each 8-day MODIS NBAR product. Both the original Landsat and STARFM-predicted images were then classified with a support vector machine (SVM), and we compared the classification errors of three scenarios: 1) classifying the one or two original Landsat images of each combination only, 2) classifying the one or two original Landsat images plus all STARFM-predicted images, and 3) classifying the one or two original Landsat images together with STARFM-predicted images for key dates. Our results indicated that using two Landsat images as the input of STARFM did not significantly improve the STARFM predictions compared to using only one, and predictions using Landsat images between July and August as input were most accurate. Including all STARFM-predicted images together with the Landsat images significantly increased average classification error by 4% points (from 21% to 25%) compared to using only Landsat images. However, incorporating only STARFM-predicted images for key dates decreased average classification error by 2% points (from 21% to 19%) compared to using only Landsat images. In particular, if only a single Landsat image was available, adding STARFM predictions for key dates significantly decreased the average classification error by 4 percentage points from 30% to 26% (p" @default.
- W2585282541 created "2017-02-10" @default.
- W2585282541 creator A5041852009 @default.
- W2585282541 creator A5077878098 @default.
- W2585282541 creator A5089142551 @default.
- W2585282541 date "2017-06-01" @default.
- W2585282541 modified "2023-09-28" @default.
- W2585282541 title "Improving the mapping of crop types in the Midwestern U.S. by fusing Landsat and MODIS satellite data" @default.
- W2585282541 cites W1838764073 @default.
- W2585282541 cites W1963768209 @default.
- W2585282541 cites W1966711117 @default.
- W2585282541 cites W1968299234 @default.
- W2585282541 cites W1971683018 @default.
- W2585282541 cites W1976129996 @default.
- W2585282541 cites W1979644084 @default.
- W2585282541 cites W1987927366 @default.
- W2585282541 cites W1993585210 @default.
- W2585282541 cites W1998281138 @default.
- W2585282541 cites W2017193019 @default.
- W2585282541 cites W2023015896 @default.
- W2585282541 cites W2027776168 @default.
- W2585282541 cites W2029185882 @default.
- W2585282541 cites W2030165874 @default.
- W2585282541 cites W2035549557 @default.
- W2585282541 cites W2036627824 @default.
- W2585282541 cites W2037364101 @default.
- W2585282541 cites W2042692910 @default.
- W2585282541 cites W2058963764 @default.
- W2585282541 cites W2061929982 @default.
- W2585282541 cites W2065800647 @default.
- W2585282541 cites W2067234885 @default.
- W2585282541 cites W2069921544 @default.
- W2585282541 cites W2078619499 @default.
- W2585282541 cites W2081399384 @default.
- W2585282541 cites W2082263501 @default.
- W2585282541 cites W2085793179 @default.
- W2585282541 cites W2088603520 @default.
- W2585282541 cites W2088941391 @default.
- W2585282541 cites W2097102631 @default.
- W2585282541 cites W2099507093 @default.
- W2585282541 cites W2100930549 @default.
- W2585282541 cites W2121025662 @default.
- W2585282541 cites W2125598516 @default.
- W2585282541 cites W2139709933 @default.
- W2585282541 cites W2142023815 @default.
- W2585282541 cites W2148185586 @default.
- W2585282541 cites W2151456308 @default.
- W2585282541 cites W2153820558 @default.
- W2585282541 cites W2155952421 @default.
- W2585282541 cites W2160434086 @default.
- W2585282541 cites W2165954860 @default.
- W2585282541 cites W2188225820 @default.
- W2585282541 cites W2200350976 @default.
- W2585282541 doi "https://doi.org/10.1016/j.jag.2017.01.012" @default.
- W2585282541 hasPublicationYear "2017" @default.
- W2585282541 type Work @default.
- W2585282541 sameAs 2585282541 @default.
- W2585282541 citedByCount "31" @default.
- W2585282541 countsByYear W25852825412017 @default.
- W2585282541 countsByYear W25852825412018 @default.
- W2585282541 countsByYear W25852825412019 @default.
- W2585282541 countsByYear W25852825412020 @default.
- W2585282541 countsByYear W25852825412021 @default.
- W2585282541 countsByYear W25852825412022 @default.
- W2585282541 countsByYear W25852825412023 @default.
- W2585282541 crossrefType "journal-article" @default.
- W2585282541 hasAuthorship W2585282541A5041852009 @default.
- W2585282541 hasAuthorship W2585282541A5077878098 @default.
- W2585282541 hasAuthorship W2585282541A5089142551 @default.
- W2585282541 hasBestOaLocation W25852825411 @default.
- W2585282541 hasConcept C127413603 @default.
- W2585282541 hasConcept C137580998 @default.
- W2585282541 hasConcept C146978453 @default.
- W2585282541 hasConcept C19269812 @default.
- W2585282541 hasConcept C205649164 @default.
- W2585282541 hasConcept C39432304 @default.
- W2585282541 hasConcept C58640448 @default.
- W2585282541 hasConcept C62649853 @default.
- W2585282541 hasConcept C97137747 @default.
- W2585282541 hasConceptScore W2585282541C127413603 @default.
- W2585282541 hasConceptScore W2585282541C137580998 @default.
- W2585282541 hasConceptScore W2585282541C146978453 @default.
- W2585282541 hasConceptScore W2585282541C19269812 @default.
- W2585282541 hasConceptScore W2585282541C205649164 @default.
- W2585282541 hasConceptScore W2585282541C39432304 @default.
- W2585282541 hasConceptScore W2585282541C58640448 @default.
- W2585282541 hasConceptScore W2585282541C62649853 @default.
- W2585282541 hasConceptScore W2585282541C97137747 @default.
- W2585282541 hasLocation W25852825411 @default.
- W2585282541 hasOpenAccess W2585282541 @default.
- W2585282541 hasPrimaryLocation W25852825411 @default.
- W2585282541 hasRelatedWork W117302946 @default.
- W2585282541 hasRelatedWork W1618102658 @default.
- W2585282541 hasRelatedWork W179602856 @default.
- W2585282541 hasRelatedWork W2013329914 @default.
- W2585282541 hasRelatedWork W2085322521 @default.
- W2585282541 hasRelatedWork W2392383081 @default.
- W2585282541 hasRelatedWork W2899084033 @default.