Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585289455> ?p ?o ?g. }
- W2585289455 endingPage "540" @default.
- W2585289455 startingPage "530" @default.
- W2585289455 abstract "RGB-D sensors can collect postural data in an automatized way. However, the application of these devices in real work environments requires overcoming problems such as lack of accuracy or body parts' occlusion. This work presents the use of RGB-D sensors and genetic algorithms for the optimization of workstation layouts. RGB-D sensors are used to capture workers' movements when they reach objects on workbenches. Collected data are then used to optimize workstation layout by means of genetic algorithms considering multiple ergonomic criteria. Results show that typical drawbacks of using RGB-D sensors for body tracking are not a problem for this application, and that the combination with intelligent algorithms can automatize the layout design process. The procedure described can be used to automatically suggest new layouts when workers or processes of production change, to adapt layouts to specific workers based on their ways to do the tasks, or to obtain layouts simultaneously optimized for several production processes." @default.
- W2585289455 created "2017-02-10" @default.
- W2585289455 creator A5019889530 @default.
- W2585289455 creator A5055485127 @default.
- W2585289455 creator A5079873073 @default.
- W2585289455 date "2017-11-01" @default.
- W2585289455 modified "2023-10-02" @default.
- W2585289455 title "Using RGB-D sensors and evolutionary algorithms for the optimization of workstation layouts" @default.
- W2585289455 cites W1541382565 @default.
- W2585289455 cites W1751162681 @default.
- W2585289455 cites W1833366547 @default.
- W2585289455 cites W1972671602 @default.
- W2585289455 cites W1974409357 @default.
- W2585289455 cites W1979415050 @default.
- W2585289455 cites W1987354253 @default.
- W2585289455 cites W1991005923 @default.
- W2585289455 cites W1992322710 @default.
- W2585289455 cites W1992442093 @default.
- W2585289455 cites W1992677435 @default.
- W2585289455 cites W2004450415 @default.
- W2585289455 cites W2006405180 @default.
- W2585289455 cites W2011287178 @default.
- W2585289455 cites W2011427988 @default.
- W2585289455 cites W2029150624 @default.
- W2585289455 cites W2030888795 @default.
- W2585289455 cites W2038218454 @default.
- W2585289455 cites W2041094000 @default.
- W2585289455 cites W2042232636 @default.
- W2585289455 cites W2046733428 @default.
- W2585289455 cites W2047769944 @default.
- W2585289455 cites W2048135233 @default.
- W2585289455 cites W2063046446 @default.
- W2585289455 cites W2065026126 @default.
- W2585289455 cites W2065620595 @default.
- W2585289455 cites W2073989718 @default.
- W2585289455 cites W2081303315 @default.
- W2585289455 cites W2087430933 @default.
- W2585289455 cites W2098927182 @default.
- W2585289455 cites W2102227855 @default.
- W2585289455 cites W2103924451 @default.
- W2585289455 cites W2121139413 @default.
- W2585289455 cites W2121588663 @default.
- W2585289455 cites W2151047074 @default.
- W2585289455 cites W2152825263 @default.
- W2585289455 cites W2165744315 @default.
- W2585289455 cites W2317053768 @default.
- W2585289455 cites W2335807830 @default.
- W2585289455 doi "https://doi.org/10.1016/j.apergo.2017.01.012" @default.
- W2585289455 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28159113" @default.
- W2585289455 hasPublicationYear "2017" @default.
- W2585289455 type Work @default.
- W2585289455 sameAs 2585289455 @default.
- W2585289455 citedByCount "8" @default.
- W2585289455 countsByYear W25852894552017 @default.
- W2585289455 countsByYear W25852894552018 @default.
- W2585289455 countsByYear W25852894552019 @default.
- W2585289455 countsByYear W25852894552022 @default.
- W2585289455 countsByYear W25852894552023 @default.
- W2585289455 crossrefType "journal-article" @default.
- W2585289455 hasAuthorship W2585289455A5019889530 @default.
- W2585289455 hasAuthorship W2585289455A5055485127 @default.
- W2585289455 hasAuthorship W2585289455A5079873073 @default.
- W2585289455 hasBestOaLocation W25852894552 @default.
- W2585289455 hasConcept C111919701 @default.
- W2585289455 hasConcept C11413529 @default.
- W2585289455 hasConcept C119857082 @default.
- W2585289455 hasConcept C154945302 @default.
- W2585289455 hasConcept C15744967 @default.
- W2585289455 hasConcept C19417346 @default.
- W2585289455 hasConcept C2775936607 @default.
- W2585289455 hasConcept C31972630 @default.
- W2585289455 hasConcept C41008148 @default.
- W2585289455 hasConcept C67953723 @default.
- W2585289455 hasConcept C79403827 @default.
- W2585289455 hasConcept C82990744 @default.
- W2585289455 hasConcept C8880873 @default.
- W2585289455 hasConcept C98045186 @default.
- W2585289455 hasConceptScore W2585289455C111919701 @default.
- W2585289455 hasConceptScore W2585289455C11413529 @default.
- W2585289455 hasConceptScore W2585289455C119857082 @default.
- W2585289455 hasConceptScore W2585289455C154945302 @default.
- W2585289455 hasConceptScore W2585289455C15744967 @default.
- W2585289455 hasConceptScore W2585289455C19417346 @default.
- W2585289455 hasConceptScore W2585289455C2775936607 @default.
- W2585289455 hasConceptScore W2585289455C31972630 @default.
- W2585289455 hasConceptScore W2585289455C41008148 @default.
- W2585289455 hasConceptScore W2585289455C67953723 @default.
- W2585289455 hasConceptScore W2585289455C79403827 @default.
- W2585289455 hasConceptScore W2585289455C82990744 @default.
- W2585289455 hasConceptScore W2585289455C8880873 @default.
- W2585289455 hasConceptScore W2585289455C98045186 @default.
- W2585289455 hasLocation W25852894551 @default.
- W2585289455 hasLocation W25852894552 @default.
- W2585289455 hasLocation W25852894553 @default.
- W2585289455 hasOpenAccess W2585289455 @default.
- W2585289455 hasPrimaryLocation W25852894551 @default.
- W2585289455 hasRelatedWork W1578117154 @default.
- W2585289455 hasRelatedWork W2030712947 @default.