Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585333298> ?p ?o ?g. }
- W2585333298 abstract "We prove two rigidity theorems for maps between Riemannian manifolds. First, we prove that a Lipschitz map $f:Mto N$ between two oriented Riemannian manifolds, whose differential is almost everywhere an orientation-preserving isometry, is an isometric immersion. This theorem was previously proved using regularity theory for conformal maps; we give a new, simple proof, by generalizing the Piola identity for the cofactor operator. Second, we prove that if there exists a sequence of mapping $f_n:Mto N$, whose differentials converge in $L^p$ to the set of orientation-preserving isometries, then there exists a subsequence converging to an isometric immersion. These results are generalizations of celebrated rigidity theorems by Liouville (1850) and Reshetnyak (1967) from Euclidean to Riemannian settings. Finally, we describe applications of these theorems to non-Euclidean elasticity and to convergence notions of manifolds." @default.
- W2585333298 created "2017-02-10" @default.
- W2585333298 creator A5019609183 @default.
- W2585333298 creator A5074551512 @default.
- W2585333298 creator A5079765787 @default.
- W2585333298 date "2017-01-31" @default.
- W2585333298 modified "2023-09-27" @default.
- W2585333298 title "Asymptotic rigidity of Riemannian manifolds" @default.
- W2585333298 cites W1534420431 @default.
- W2585333298 cites W1542587274 @default.
- W2585333298 cites W1622235804 @default.
- W2585333298 cites W1671098680 @default.
- W2585333298 cites W1978271686 @default.
- W2585333298 cites W1979769933 @default.
- W2585333298 cites W1984634495 @default.
- W2585333298 cites W2007174367 @default.
- W2585333298 cites W2032354160 @default.
- W2585333298 cites W203602567 @default.
- W2585333298 cites W2105340951 @default.
- W2585333298 cites W2121015218 @default.
- W2585333298 cites W2185930713 @default.
- W2585333298 cites W2298774316 @default.
- W2585333298 cites W2329517036 @default.
- W2585333298 cites W2338343974 @default.
- W2585333298 cites W2519534096 @default.
- W2585333298 cites W2962718986 @default.
- W2585333298 cites W2962814316 @default.
- W2585333298 cites W2963235976 @default.
- W2585333298 cites W2963269735 @default.
- W2585333298 cites W3103081454 @default.
- W2585333298 cites W63894421 @default.
- W2585333298 hasPublicationYear "2017" @default.
- W2585333298 type Work @default.
- W2585333298 sameAs 2585333298 @default.
- W2585333298 citedByCount "1" @default.
- W2585333298 countsByYear W25853332982018 @default.
- W2585333298 crossrefType "posted-content" @default.
- W2585333298 hasAuthorship W2585333298A5019609183 @default.
- W2585333298 hasAuthorship W2585333298A5074551512 @default.
- W2585333298 hasAuthorship W2585333298A5079765787 @default.
- W2585333298 hasConcept C12520029 @default.
- W2585333298 hasConcept C127413603 @default.
- W2585333298 hasConcept C129782007 @default.
- W2585333298 hasConcept C134306372 @default.
- W2585333298 hasConcept C137877099 @default.
- W2585333298 hasConcept C160343418 @default.
- W2585333298 hasConcept C165818556 @default.
- W2585333298 hasConcept C181104567 @default.
- W2585333298 hasConcept C192939610 @default.
- W2585333298 hasConcept C195065555 @default.
- W2585333298 hasConcept C202444582 @default.
- W2585333298 hasConcept C203934109 @default.
- W2585333298 hasConcept C2524010 @default.
- W2585333298 hasConcept C33923547 @default.
- W2585333298 hasConcept C34388435 @default.
- W2585333298 hasConcept C66938386 @default.
- W2585333298 hasConcept C82457910 @default.
- W2585333298 hasConcept C98214594 @default.
- W2585333298 hasConceptScore W2585333298C12520029 @default.
- W2585333298 hasConceptScore W2585333298C127413603 @default.
- W2585333298 hasConceptScore W2585333298C129782007 @default.
- W2585333298 hasConceptScore W2585333298C134306372 @default.
- W2585333298 hasConceptScore W2585333298C137877099 @default.
- W2585333298 hasConceptScore W2585333298C160343418 @default.
- W2585333298 hasConceptScore W2585333298C165818556 @default.
- W2585333298 hasConceptScore W2585333298C181104567 @default.
- W2585333298 hasConceptScore W2585333298C192939610 @default.
- W2585333298 hasConceptScore W2585333298C195065555 @default.
- W2585333298 hasConceptScore W2585333298C202444582 @default.
- W2585333298 hasConceptScore W2585333298C203934109 @default.
- W2585333298 hasConceptScore W2585333298C2524010 @default.
- W2585333298 hasConceptScore W2585333298C33923547 @default.
- W2585333298 hasConceptScore W2585333298C34388435 @default.
- W2585333298 hasConceptScore W2585333298C66938386 @default.
- W2585333298 hasConceptScore W2585333298C82457910 @default.
- W2585333298 hasConceptScore W2585333298C98214594 @default.
- W2585333298 hasLocation W25853332981 @default.
- W2585333298 hasOpenAccess W2585333298 @default.
- W2585333298 hasPrimaryLocation W25853332981 @default.
- W2585333298 hasRelatedWork W1516029558 @default.
- W2585333298 hasRelatedWork W1560351144 @default.
- W2585333298 hasRelatedWork W1633932918 @default.
- W2585333298 hasRelatedWork W184671012 @default.
- W2585333298 hasRelatedWork W1998765306 @default.
- W2585333298 hasRelatedWork W2037861368 @default.
- W2585333298 hasRelatedWork W2064554272 @default.
- W2585333298 hasRelatedWork W2090284618 @default.
- W2585333298 hasRelatedWork W2114736929 @default.
- W2585333298 hasRelatedWork W2137835366 @default.
- W2585333298 hasRelatedWork W2384501249 @default.
- W2585333298 hasRelatedWork W2753425566 @default.
- W2585333298 hasRelatedWork W2952604686 @default.
- W2585333298 hasRelatedWork W2980034232 @default.
- W2585333298 hasRelatedWork W2989689145 @default.
- W2585333298 hasRelatedWork W3015572090 @default.
- W2585333298 hasRelatedWork W3093015111 @default.
- W2585333298 hasRelatedWork W3112179887 @default.
- W2585333298 hasRelatedWork W3119184149 @default.
- W2585333298 hasRelatedWork W3150064385 @default.
- W2585333298 isParatext "false" @default.