Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585388432> ?p ?o ?g. }
- W2585388432 abstract "Genomic-scale sequence alignments are increasingly used to infer phylogenies in order to better understand the processes and patterns of evolution. Different partitions within these new alignments (e.g., genes, codon positions, and structural features) often favor hundreds if not thousands of competing phylogenies. Summarizing and comparing phylogenies obtained from multi-source data sets using current consensus tree methods discards valuable information and can disguise potential methodological problems. Discovery of efficient and accurate dimensionality reduction methods used to display at once in 2- or 3- dimensions the relationship among these competing phylogenies will help practitioners diagnose the limits of current evolutionary models and potential problems with phylogenetic reconstruction methods when analyzing large multi-source data sets. We introduce several dimensionality reduction methods to visualize in 2- and 3-dimensions the relationship among competing phylogenies obtained from gene partitions found in three mid- to large-size mitochondrial genome alignments. We test the performance of these dimensionality reduction methods by applying several goodness-of-fit measures. The intrinsic dimensionality of each data set is also estimated to determine whether projections in 2- and 3-dimensions can be expected to reveal meaningful relationships among trees from different data partitions. Several new approaches to aid in the comparison of different phylogenetic landscapes are presented. Curvilinear Components Analysis (CCA) and a stochastic gradient decent (SGD) optimization method give the best representation of the original tree-to-tree distance matrix for each of the three- mitochondrial genome alignments and greatly outperformed the method currently used to visualize tree landscapes. The CCA + SGD method converged at least as fast as previously applied methods for visualizing tree landscapes. We demonstrate for all three mtDNA alignments that 3D projections significantly increase the fit between the tree-to-tree distances and can facilitate the interpretation of the relationship among phylogenetic trees. We demonstrate that the choice of dimensionality reduction method can significantly influence the spatial relationship among a large set of competing phylogenetic trees. We highlight the importance of selecting a dimensionality reduction method to visualize large multi-locus phylogenetic landscapes and demonstrate that 3D projections of mitochondrial tree landscapes better capture the relationship among the trees being compared." @default.
- W2585388432 created "2017-02-10" @default.
- W2585388432 creator A5006647644 @default.
- W2585388432 creator A5016475334 @default.
- W2585388432 creator A5018426276 @default.
- W2585388432 date "2017-02-02" @default.
- W2585388432 modified "2023-10-15" @default.
- W2585388432 title "Visualizing phylogenetic tree landscapes" @default.
- W2585388432 cites W1703729266 @default.
- W2585388432 cites W1742512077 @default.
- W2585388432 cites W1843274134 @default.
- W2585388432 cites W1963749031 @default.
- W2585388432 cites W1977694535 @default.
- W2585388432 cites W1981509964 @default.
- W2585388432 cites W2009880849 @default.
- W2585388432 cites W2016059807 @default.
- W2585388432 cites W2026551295 @default.
- W2585388432 cites W2029401646 @default.
- W2585388432 cites W2030966943 @default.
- W2585388432 cites W2033288963 @default.
- W2585388432 cites W2060425093 @default.
- W2585388432 cites W2063709694 @default.
- W2585388432 cites W2076991903 @default.
- W2585388432 cites W2077139171 @default.
- W2585388432 cites W2096484952 @default.
- W2585388432 cites W2099364951 @default.
- W2585388432 cites W2100437550 @default.
- W2585388432 cites W2101546326 @default.
- W2585388432 cites W2106754084 @default.
- W2585388432 cites W2108087670 @default.
- W2585388432 cites W2111303992 @default.
- W2585388432 cites W2112620675 @default.
- W2585388432 cites W2113957760 @default.
- W2585388432 cites W2124790653 @default.
- W2585388432 cites W2130333286 @default.
- W2585388432 cites W2131913792 @default.
- W2585388432 cites W2134312057 @default.
- W2585388432 cites W2145608399 @default.
- W2585388432 cites W2152825437 @default.
- W2585388432 cites W2154675536 @default.
- W2585388432 cites W2169507824 @default.
- W2585388432 cites W2171586597 @default.
- W2585388432 cites W2518696893 @default.
- W2585388432 cites W4210681352 @default.
- W2585388432 cites W4231784440 @default.
- W2585388432 cites W4252913873 @default.
- W2585388432 cites W4254275792 @default.
- W2585388432 cites W4292403327 @default.
- W2585388432 cites W4362073016 @default.
- W2585388432 doi "https://doi.org/10.1186/s12859-017-1479-1" @default.
- W2585388432 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5290614" @default.
- W2585388432 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28153045" @default.
- W2585388432 hasPublicationYear "2017" @default.
- W2585388432 type Work @default.
- W2585388432 sameAs 2585388432 @default.
- W2585388432 citedByCount "17" @default.
- W2585388432 countsByYear W25853884322017 @default.
- W2585388432 countsByYear W25853884322018 @default.
- W2585388432 countsByYear W25853884322019 @default.
- W2585388432 countsByYear W25853884322020 @default.
- W2585388432 countsByYear W25853884322021 @default.
- W2585388432 countsByYear W25853884322022 @default.
- W2585388432 countsByYear W25853884322023 @default.
- W2585388432 crossrefType "journal-article" @default.
- W2585388432 hasAuthorship W2585388432A5006647644 @default.
- W2585388432 hasAuthorship W2585388432A5016475334 @default.
- W2585388432 hasAuthorship W2585388432A5018426276 @default.
- W2585388432 hasBestOaLocation W25853884321 @default.
- W2585388432 hasConcept C104317684 @default.
- W2585388432 hasConcept C111030470 @default.
- W2585388432 hasConcept C113174947 @default.
- W2585388432 hasConcept C124101348 @default.
- W2585388432 hasConcept C134306372 @default.
- W2585388432 hasConcept C154945302 @default.
- W2585388432 hasConcept C177264268 @default.
- W2585388432 hasConcept C193252679 @default.
- W2585388432 hasConcept C199360897 @default.
- W2585388432 hasConcept C33923547 @default.
- W2585388432 hasConcept C41008148 @default.
- W2585388432 hasConcept C5349765 @default.
- W2585388432 hasConcept C54355233 @default.
- W2585388432 hasConcept C60644358 @default.
- W2585388432 hasConcept C70518039 @default.
- W2585388432 hasConcept C86803240 @default.
- W2585388432 hasConceptScore W2585388432C104317684 @default.
- W2585388432 hasConceptScore W2585388432C111030470 @default.
- W2585388432 hasConceptScore W2585388432C113174947 @default.
- W2585388432 hasConceptScore W2585388432C124101348 @default.
- W2585388432 hasConceptScore W2585388432C134306372 @default.
- W2585388432 hasConceptScore W2585388432C154945302 @default.
- W2585388432 hasConceptScore W2585388432C177264268 @default.
- W2585388432 hasConceptScore W2585388432C193252679 @default.
- W2585388432 hasConceptScore W2585388432C199360897 @default.
- W2585388432 hasConceptScore W2585388432C33923547 @default.
- W2585388432 hasConceptScore W2585388432C41008148 @default.
- W2585388432 hasConceptScore W2585388432C5349765 @default.
- W2585388432 hasConceptScore W2585388432C54355233 @default.
- W2585388432 hasConceptScore W2585388432C60644358 @default.
- W2585388432 hasConceptScore W2585388432C70518039 @default.
- W2585388432 hasConceptScore W2585388432C86803240 @default.