Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585432886> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2585432886 endingPage "108" @default.
- W2585432886 startingPage "92" @default.
- W2585432886 abstract "Deep Learning is the recent machine learning technique that tries to model high level abstractions in data by using multiple processing layers with complex structures. It is also known as deep structured learning, hierarchical learning or deep machine learning. The term “deep learning indicates the method used in training multi-layered neural networks. Deep Learning technique has obtained remarkable success in the field of face recognition with 97.5% accuracy. Facial Electromyogram (FEMG) signals are used to detect the different emotions of humans. Some of the deep learning techniques discussed in this paper are Deep Boltzmann Machine (DBM), Deep Belief Networks (DBN), Convolutional Neural Networks (CNN) and Stacked Auto Encoders respectively. This paper focuses on the review of some of the deep learning techniques used by various researchers which paved the way to improve the classification accuracy of the FEMG signals as well as the speech signals." @default.
- W2585432886 created "2017-02-10" @default.
- W2585432886 creator A5009975459 @default.
- W2585432886 creator A5052291444 @default.
- W2585432886 date "2016-11-01" @default.
- W2585432886 modified "2023-10-14" @default.
- W2585432886 title "A Review on Deep Learning Algorithms for Speech and Facial Emotion Recognition" @default.
- W2585432886 cites W108566091 @default.
- W2585432886 cites W1507741742 @default.
- W2585432886 cites W1871419576 @default.
- W2585432886 cites W1994885532 @default.
- W2585432886 cites W2044170013 @default.
- W2585432886 cites W2050752817 @default.
- W2585432886 cites W2079988864 @default.
- W2585432886 cites W2148463593 @default.
- W2585432886 cites W2195750176 @default.
- W2585432886 cites W2253728219 @default.
- W2585432886 cites W2280620570 @default.
- W2585432886 cites W2295001676 @default.
- W2585432886 cites W2310113001 @default.
- W2585432886 cites W2314470091 @default.
- W2585432886 cites W2401062007 @default.
- W2585432886 cites W2406223855 @default.
- W2585432886 doi "https://doi.org/10.11591/aptikom.j.csit.118" @default.
- W2585432886 hasPublicationYear "2016" @default.
- W2585432886 type Work @default.
- W2585432886 sameAs 2585432886 @default.
- W2585432886 citedByCount "15" @default.
- W2585432886 countsByYear W25854328862018 @default.
- W2585432886 countsByYear W25854328862019 @default.
- W2585432886 countsByYear W25854328862020 @default.
- W2585432886 countsByYear W25854328862021 @default.
- W2585432886 countsByYear W25854328862022 @default.
- W2585432886 countsByYear W25854328862023 @default.
- W2585432886 crossrefType "journal-article" @default.
- W2585432886 hasAuthorship W2585432886A5009975459 @default.
- W2585432886 hasAuthorship W2585432886A5052291444 @default.
- W2585432886 hasBestOaLocation W25854328861 @default.
- W2585432886 hasConcept C108583219 @default.
- W2585432886 hasConcept C119857082 @default.
- W2585432886 hasConcept C144024400 @default.
- W2585432886 hasConcept C153180895 @default.
- W2585432886 hasConcept C154945302 @default.
- W2585432886 hasConcept C192576344 @default.
- W2585432886 hasConcept C199354608 @default.
- W2585432886 hasConcept C202444582 @default.
- W2585432886 hasConcept C2779304628 @default.
- W2585432886 hasConcept C28490314 @default.
- W2585432886 hasConcept C2984842247 @default.
- W2585432886 hasConcept C33923547 @default.
- W2585432886 hasConcept C36289849 @default.
- W2585432886 hasConcept C41008148 @default.
- W2585432886 hasConcept C50644808 @default.
- W2585432886 hasConcept C81363708 @default.
- W2585432886 hasConcept C9652623 @default.
- W2585432886 hasConcept C97385483 @default.
- W2585432886 hasConceptScore W2585432886C108583219 @default.
- W2585432886 hasConceptScore W2585432886C119857082 @default.
- W2585432886 hasConceptScore W2585432886C144024400 @default.
- W2585432886 hasConceptScore W2585432886C153180895 @default.
- W2585432886 hasConceptScore W2585432886C154945302 @default.
- W2585432886 hasConceptScore W2585432886C192576344 @default.
- W2585432886 hasConceptScore W2585432886C199354608 @default.
- W2585432886 hasConceptScore W2585432886C202444582 @default.
- W2585432886 hasConceptScore W2585432886C2779304628 @default.
- W2585432886 hasConceptScore W2585432886C28490314 @default.
- W2585432886 hasConceptScore W2585432886C2984842247 @default.
- W2585432886 hasConceptScore W2585432886C33923547 @default.
- W2585432886 hasConceptScore W2585432886C36289849 @default.
- W2585432886 hasConceptScore W2585432886C41008148 @default.
- W2585432886 hasConceptScore W2585432886C50644808 @default.
- W2585432886 hasConceptScore W2585432886C81363708 @default.
- W2585432886 hasConceptScore W2585432886C9652623 @default.
- W2585432886 hasConceptScore W2585432886C97385483 @default.
- W2585432886 hasIssue "3" @default.
- W2585432886 hasLocation W25854328861 @default.
- W2585432886 hasOpenAccess W2585432886 @default.
- W2585432886 hasPrimaryLocation W25854328861 @default.
- W2585432886 hasRelatedWork W2567271240 @default.
- W2585432886 hasRelatedWork W2616536158 @default.
- W2585432886 hasRelatedWork W2892911634 @default.
- W2585432886 hasRelatedWork W2941846814 @default.
- W2585432886 hasRelatedWork W2955124940 @default.
- W2585432886 hasRelatedWork W2971852391 @default.
- W2585432886 hasRelatedWork W3000866861 @default.
- W2585432886 hasRelatedWork W3082895349 @default.
- W2585432886 hasRelatedWork W3123344745 @default.
- W2585432886 hasRelatedWork W870929296 @default.
- W2585432886 hasVolume "1" @default.
- W2585432886 isParatext "false" @default.
- W2585432886 isRetracted "false" @default.
- W2585432886 magId "2585432886" @default.
- W2585432886 workType "article" @default.