Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585527639> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2585527639 abstract "Logistic regression (LR) for classification is the workhorse in industry, where a set of predefined classes is required. The model, however, fails to work in the case where the class labels are not known in advance, a problem we term label-drift classification. Label-drift classification problem naturally occurs in many applications, especially in the context of streaming settings where the incoming data may contain samples categorized with new classes that have not been previously seen. Additionally, in the wave of big data, traditional LR methods may fail due to their expense of running time. In this paper, we introduce a novel variant of LR, namely one-pass logistic regression (OLR) to offer a principled treatment for label-drift and large-scale classifications. To handle largescale classification for big data, we further extend our OLR to a distributed setting for parallelization, termed sparkling OLR (Spark-OLR). We demonstrate the scalability of our proposed methods on large-scale datasets with more than one hundred million data points. The experimental results show that the predictive performances of our methods are comparable orbetter than those of state-of-the-art baselines whilst the executiontime is much faster at an order of magnitude. In addition, the OLR and Spark-OLR are invariant to data shuffling and have no hyperparameter to tune that significantly benefits data practitioners and overcomes the curse of big data cross-validationto select optimal hyperparameters." @default.
- W2585527639 created "2017-02-10" @default.
- W2585527639 creator A5011986638 @default.
- W2585527639 creator A5036447132 @default.
- W2585527639 creator A5045540854 @default.
- W2585527639 creator A5055078097 @default.
- W2585527639 creator A5086752305 @default.
- W2585527639 date "2016-12-01" @default.
- W2585527639 modified "2023-09-22" @default.
- W2585527639 title "One-Pass Logistic Regression for Label-Drift and Large-Scale Classification on Distributed Systems" @default.
- W2585527639 cites W2099419573 @default.
- W2585527639 cites W2099878672 @default.
- W2585527639 cites W2123003172 @default.
- W2585527639 cites W2296073425 @default.
- W2585527639 cites W2608289103 @default.
- W2585527639 cites W2903950532 @default.
- W2585527639 cites W4255466416 @default.
- W2585527639 doi "https://doi.org/10.1109/icdm.2016.0145" @default.
- W2585527639 hasPublicationYear "2016" @default.
- W2585527639 type Work @default.
- W2585527639 sameAs 2585527639 @default.
- W2585527639 citedByCount "7" @default.
- W2585527639 countsByYear W25855276392016 @default.
- W2585527639 countsByYear W25855276392017 @default.
- W2585527639 countsByYear W25855276392018 @default.
- W2585527639 countsByYear W25855276392020 @default.
- W2585527639 countsByYear W25855276392021 @default.
- W2585527639 countsByYear W25855276392023 @default.
- W2585527639 crossrefType "proceedings-article" @default.
- W2585527639 hasAuthorship W2585527639A5011986638 @default.
- W2585527639 hasAuthorship W2585527639A5036447132 @default.
- W2585527639 hasAuthorship W2585527639A5045540854 @default.
- W2585527639 hasAuthorship W2585527639A5055078097 @default.
- W2585527639 hasAuthorship W2585527639A5086752305 @default.
- W2585527639 hasConcept C105795698 @default.
- W2585527639 hasConcept C119857082 @default.
- W2585527639 hasConcept C124101348 @default.
- W2585527639 hasConcept C151956035 @default.
- W2585527639 hasConcept C153180895 @default.
- W2585527639 hasConcept C154945302 @default.
- W2585527639 hasConcept C205649164 @default.
- W2585527639 hasConcept C2778755073 @default.
- W2585527639 hasConcept C33923547 @default.
- W2585527639 hasConcept C41008148 @default.
- W2585527639 hasConcept C58640448 @default.
- W2585527639 hasConcept C83546350 @default.
- W2585527639 hasConceptScore W2585527639C105795698 @default.
- W2585527639 hasConceptScore W2585527639C119857082 @default.
- W2585527639 hasConceptScore W2585527639C124101348 @default.
- W2585527639 hasConceptScore W2585527639C151956035 @default.
- W2585527639 hasConceptScore W2585527639C153180895 @default.
- W2585527639 hasConceptScore W2585527639C154945302 @default.
- W2585527639 hasConceptScore W2585527639C205649164 @default.
- W2585527639 hasConceptScore W2585527639C2778755073 @default.
- W2585527639 hasConceptScore W2585527639C33923547 @default.
- W2585527639 hasConceptScore W2585527639C41008148 @default.
- W2585527639 hasConceptScore W2585527639C58640448 @default.
- W2585527639 hasConceptScore W2585527639C83546350 @default.
- W2585527639 hasLocation W25855276391 @default.
- W2585527639 hasOpenAccess W2585527639 @default.
- W2585527639 hasPrimaryLocation W25855276391 @default.
- W2585527639 hasRelatedWork W1527971894 @default.
- W2585527639 hasRelatedWork W1966326540 @default.
- W2585527639 hasRelatedWork W1976732660 @default.
- W2585527639 hasRelatedWork W2031297073 @default.
- W2585527639 hasRelatedWork W2046436540 @default.
- W2585527639 hasRelatedWork W2075937340 @default.
- W2585527639 hasRelatedWork W2127072394 @default.
- W2585527639 hasRelatedWork W2249402725 @default.
- W2585527639 hasRelatedWork W2589092023 @default.
- W2585527639 hasRelatedWork W2961085424 @default.
- W2585527639 isParatext "false" @default.
- W2585527639 isRetracted "false" @default.
- W2585527639 magId "2585527639" @default.
- W2585527639 workType "article" @default.