Matches in SemOpenAlex for { <https://semopenalex.org/work/W2585797090> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2585797090 abstract "The aim of this PhD thesis is to set up a mathematical strategy to investigate the physical process of protein aggregation. The study of this largely unknown process is particularly important since it has been identified as a key feature of a wide class of incurable diseases, called amyloid diseases. Prion diseases belong to this class and are caused by the aggregation of a misfolded configuration of the prion protein. Our work contributes to the research on prion diseases, by focusing on two kinds of aggregates : oligomers and fibrils.Oligomers, which are suspected of being the most toxic aggregates, are studied in the first part of this thesis. We base our work on the analysis of two types of experimental data. On the one hand, we consider Static Light Scattering (SLS) data, which can be interpreted biologically as the measurement of the average oligomer size and mathematically as the second moment of aggregate concentration. On the other hand, we consider oligomer size distribution data collected at several instants by using Size Exclusion Chromatography (SEC). Our study leads to the important conclusion that at least two different types of oligomers are present. Moreover, we provide a description of the interaction between these oligomers by proposing, for the first time, a two-species model. Our model is composed of a set of ODEs with the kinetic rates as parameters. The qualitative description provided by this model has been coupled to the information contained in the noisy experimental SLS data in a data assimilation framework. By means of the extended Kalman filter method, we solve a non-linear inverse problem, thereby estimating the kinetic coefficients associated to the experimental data. To validate this model we have compared our estimation to the experimental SEC data, observing a very good agreement between the two. Our oligomer species characterisation may lead to new strategies to design a first targeted treatment for prion diseases.The methodology applied to the study of oligomers can be seen as a first step in the analysis of fibrils. Due to the physical properties of these aggregates, fewer and less precise experiments can be performed and so a mathematical approach can provide a valuable contribution to their study. Our contribution is to propose a general strategy to estimate the initial condition of a fibril system. Inspired by the Lifshitz-Slyozov theory, we describe this system by a transport equation coupled with an integral equation. The estimation is performed making use of some empirical observations on the system. We consider the general case of observing a moment of order n. It is indeed possible to measure the first moment by Thioflavine T fluorescence or the second moment by SLS. We provide a theoretical and numerical solution of the initial condition estimation problem in the linear case of a depolymerising system. In particular, for constant depolymerisation rates, we propose a kernel regularisation strategy, that provides a first characterisation of the estimation. In the variable depolymerisation rates, we outline the variational data assimilation method 4d-Var. This method is more general and can be easily adapted to treat different problems. This inverse problem is particularly interesting since it can also be applied in other fields such as the cell cycle or dust formation." @default.
- W2585797090 created "2017-02-10" @default.
- W2585797090 creator A5042931204 @default.
- W2585797090 date "2017-01-13" @default.
- W2585797090 modified "2023-09-26" @default.
- W2585797090 title "Inverse problems and data assimilation methods applied to protein polymerisation" @default.
- W2585797090 hasPublicationYear "2017" @default.
- W2585797090 type Work @default.
- W2585797090 sameAs 2585797090 @default.
- W2585797090 citedByCount "0" @default.
- W2585797090 crossrefType "dissertation" @default.
- W2585797090 hasAuthorship W2585797090A5042931204 @default.
- W2585797090 hasConcept C136238340 @default.
- W2585797090 hasConcept C154945302 @default.
- W2585797090 hasConcept C166940927 @default.
- W2585797090 hasConcept C171250308 @default.
- W2585797090 hasConcept C178790620 @default.
- W2585797090 hasConcept C185592680 @default.
- W2585797090 hasConcept C186060115 @default.
- W2585797090 hasConcept C192562407 @default.
- W2585797090 hasConcept C2777212361 @default.
- W2585797090 hasConcept C2780642029 @default.
- W2585797090 hasConcept C41008148 @default.
- W2585797090 hasConcept C4679612 @default.
- W2585797090 hasConcept C521977710 @default.
- W2585797090 hasConcept C55493867 @default.
- W2585797090 hasConcept C86803240 @default.
- W2585797090 hasConceptScore W2585797090C136238340 @default.
- W2585797090 hasConceptScore W2585797090C154945302 @default.
- W2585797090 hasConceptScore W2585797090C166940927 @default.
- W2585797090 hasConceptScore W2585797090C171250308 @default.
- W2585797090 hasConceptScore W2585797090C178790620 @default.
- W2585797090 hasConceptScore W2585797090C185592680 @default.
- W2585797090 hasConceptScore W2585797090C186060115 @default.
- W2585797090 hasConceptScore W2585797090C192562407 @default.
- W2585797090 hasConceptScore W2585797090C2777212361 @default.
- W2585797090 hasConceptScore W2585797090C2780642029 @default.
- W2585797090 hasConceptScore W2585797090C41008148 @default.
- W2585797090 hasConceptScore W2585797090C4679612 @default.
- W2585797090 hasConceptScore W2585797090C521977710 @default.
- W2585797090 hasConceptScore W2585797090C55493867 @default.
- W2585797090 hasConceptScore W2585797090C86803240 @default.
- W2585797090 hasLocation W25857970901 @default.
- W2585797090 hasOpenAccess W2585797090 @default.
- W2585797090 hasPrimaryLocation W25857970901 @default.
- W2585797090 hasRelatedWork W1553836291 @default.
- W2585797090 hasRelatedWork W1970986888 @default.
- W2585797090 hasRelatedWork W1980223215 @default.
- W2585797090 hasRelatedWork W1980417600 @default.
- W2585797090 hasRelatedWork W1980853785 @default.
- W2585797090 hasRelatedWork W1982194390 @default.
- W2585797090 hasRelatedWork W1983907180 @default.
- W2585797090 hasRelatedWork W2009145767 @default.
- W2585797090 hasRelatedWork W2054171947 @default.
- W2585797090 hasRelatedWork W2070423493 @default.
- W2585797090 hasRelatedWork W2074147406 @default.
- W2585797090 hasRelatedWork W2095871248 @default.
- W2585797090 hasRelatedWork W2108346084 @default.
- W2585797090 hasRelatedWork W2153252145 @default.
- W2585797090 hasRelatedWork W2170697148 @default.
- W2585797090 hasRelatedWork W2271767491 @default.
- W2585797090 hasRelatedWork W2461462782 @default.
- W2585797090 hasRelatedWork W2890797074 @default.
- W2585797090 hasRelatedWork W3086667779 @default.
- W2585797090 hasRelatedWork W54669902 @default.
- W2585797090 isParatext "false" @default.
- W2585797090 isRetracted "false" @default.
- W2585797090 magId "2585797090" @default.
- W2585797090 workType "dissertation" @default.