Matches in SemOpenAlex for { <https://semopenalex.org/work/W2586252110> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2586252110 abstract "Classification of EEG signals is an important task in Brain Computer Interface (BCI) research. However, the large number of attributes of EEG data is regarded as a curse for classifiers. This paper aims at dimensionality reduction of EEG signals. We use rough set theory to reduce the dimensions of EEG data. In particular, we use discernibility matrix (DM) to compute an indispensable set of attributes of the data so that the attribute set is reduced before classification. We then use Naive Bayes (NB) classifier, Support Vector Machine (SVM) and Extreme Learning Machine (ELM) for classification of the EEG data containing only these attributes. We compare our method with the more popular Principal Component Analysis (PCA). We have used EEG dataset from BCI competition-II to perform the experiments. Accuracy, recall and precision are used as metrics to measure the performance of the classifiers with original dataset, PCA-reduced dataset and DM-reduced dataset. The classification results we obtained for the DM-reduced dataset are found to be as good as for the whole dataset without reduction and generally better than PCA-reduced dataset." @default.
- W2586252110 created "2017-02-17" @default.
- W2586252110 creator A5015385344 @default.
- W2586252110 creator A5031023378 @default.
- W2586252110 creator A5058396473 @default.
- W2586252110 creator A5066146847 @default.
- W2586252110 date "2016-11-01" @default.
- W2586252110 modified "2023-10-01" @default.
- W2586252110 title "Discernibility matrix based dimensionality reduction for EEG signal" @default.
- W2586252110 cites W1563088657 @default.
- W2586252110 cites W2099163214 @default.
- W2586252110 cites W2111072639 @default.
- W2586252110 cites W2128728535 @default.
- W2586252110 cites W2137744263 @default.
- W2586252110 cites W2156832349 @default.
- W2586252110 cites W2508797499 @default.
- W2586252110 cites W4255833381 @default.
- W2586252110 cites W97750992 @default.
- W2586252110 doi "https://doi.org/10.1109/tencon.2016.7848530" @default.
- W2586252110 hasPublicationYear "2016" @default.
- W2586252110 type Work @default.
- W2586252110 sameAs 2586252110 @default.
- W2586252110 citedByCount "14" @default.
- W2586252110 countsByYear W25862521102017 @default.
- W2586252110 countsByYear W25862521102018 @default.
- W2586252110 countsByYear W25862521102019 @default.
- W2586252110 countsByYear W25862521102020 @default.
- W2586252110 countsByYear W25862521102021 @default.
- W2586252110 countsByYear W25862521102022 @default.
- W2586252110 countsByYear W25862521102023 @default.
- W2586252110 crossrefType "proceedings-article" @default.
- W2586252110 hasAuthorship W2586252110A5015385344 @default.
- W2586252110 hasAuthorship W2586252110A5031023378 @default.
- W2586252110 hasAuthorship W2586252110A5058396473 @default.
- W2586252110 hasAuthorship W2586252110A5066146847 @default.
- W2586252110 hasConcept C118552586 @default.
- W2586252110 hasConcept C119857082 @default.
- W2586252110 hasConcept C12267149 @default.
- W2586252110 hasConcept C124101348 @default.
- W2586252110 hasConcept C153180895 @default.
- W2586252110 hasConcept C154945302 @default.
- W2586252110 hasConcept C15744967 @default.
- W2586252110 hasConcept C173201364 @default.
- W2586252110 hasConcept C27438332 @default.
- W2586252110 hasConcept C2780150128 @default.
- W2586252110 hasConcept C41008148 @default.
- W2586252110 hasConcept C50644808 @default.
- W2586252110 hasConcept C52001869 @default.
- W2586252110 hasConcept C522805319 @default.
- W2586252110 hasConcept C58489278 @default.
- W2586252110 hasConcept C70518039 @default.
- W2586252110 hasConcept C95623464 @default.
- W2586252110 hasConceptScore W2586252110C118552586 @default.
- W2586252110 hasConceptScore W2586252110C119857082 @default.
- W2586252110 hasConceptScore W2586252110C12267149 @default.
- W2586252110 hasConceptScore W2586252110C124101348 @default.
- W2586252110 hasConceptScore W2586252110C153180895 @default.
- W2586252110 hasConceptScore W2586252110C154945302 @default.
- W2586252110 hasConceptScore W2586252110C15744967 @default.
- W2586252110 hasConceptScore W2586252110C173201364 @default.
- W2586252110 hasConceptScore W2586252110C27438332 @default.
- W2586252110 hasConceptScore W2586252110C2780150128 @default.
- W2586252110 hasConceptScore W2586252110C41008148 @default.
- W2586252110 hasConceptScore W2586252110C50644808 @default.
- W2586252110 hasConceptScore W2586252110C52001869 @default.
- W2586252110 hasConceptScore W2586252110C522805319 @default.
- W2586252110 hasConceptScore W2586252110C58489278 @default.
- W2586252110 hasConceptScore W2586252110C70518039 @default.
- W2586252110 hasConceptScore W2586252110C95623464 @default.
- W2586252110 hasLocation W25862521101 @default.
- W2586252110 hasOpenAccess W2586252110 @default.
- W2586252110 hasPrimaryLocation W25862521101 @default.
- W2586252110 hasRelatedWork W1579270119 @default.
- W2586252110 hasRelatedWork W2091080939 @default.
- W2586252110 hasRelatedWork W2151015462 @default.
- W2586252110 hasRelatedWork W2156005575 @default.
- W2586252110 hasRelatedWork W2380927352 @default.
- W2586252110 hasRelatedWork W2556319748 @default.
- W2586252110 hasRelatedWork W2771038650 @default.
- W2586252110 hasRelatedWork W2912687981 @default.
- W2586252110 hasRelatedWork W3178621026 @default.
- W2586252110 hasRelatedWork W91700548 @default.
- W2586252110 isParatext "false" @default.
- W2586252110 isRetracted "false" @default.
- W2586252110 magId "2586252110" @default.
- W2586252110 workType "article" @default.