Matches in SemOpenAlex for { <https://semopenalex.org/work/W2586481174> ?p ?o ?g. }
- W2586481174 abstract "Sparse dictionary learning on face recognition focuses on representing a face linearly by a set of atoms from the dictionary. How to learn a dictionary is a key issue to sparse representation. Structured dictionary has been used during the process of dictionary learning in order to improve the performance of classification. However, we consider that dictionary should not only be composed of a discriminant dictionary for identity or class information, but also a common dictionary which may contains disturbances and some common features for all class. Meanwhile, most of the proposed methods learns features and dictionary separatively, which may decrease the classification ability. Because projecting the source domain into a low dimensional space before dictionary learning will fail to catch some vital class-specific information which may be learned from dictionary learning. In this paper, a discriminant dictionary learning method with sparse embedding is proposed. Both discriminant and common dictionary are learned under the constraints on pairwise distance of sparsity coefficients, and the projection matrix is learned jointly. Experiments show that our method achieves better performance than other state-of-art methods on face recognition." @default.
- W2586481174 created "2017-02-17" @default.
- W2586481174 creator A5012756702 @default.
- W2586481174 creator A5084573070 @default.
- W2586481174 date "2016-10-01" @default.
- W2586481174 modified "2023-09-23" @default.
- W2586481174 title "Discriminant dictionary learning with sparse embedding on face recognition" @default.
- W2586481174 cites W117482296 @default.
- W2586481174 cites W1498305593 @default.
- W2586481174 cites W1672851775 @default.
- W2586481174 cites W1736339626 @default.
- W2586481174 cites W1963932623 @default.
- W2586481174 cites W1968100926 @default.
- W2586481174 cites W1975815261 @default.
- W2586481174 cites W1982405594 @default.
- W2586481174 cites W1986988203 @default.
- W2586481174 cites W2027805700 @default.
- W2586481174 cites W2028349405 @default.
- W2586481174 cites W2032768707 @default.
- W2586481174 cites W2046769852 @default.
- W2586481174 cites W2048262339 @default.
- W2586481174 cites W2057755039 @default.
- W2586481174 cites W2069959554 @default.
- W2586481174 cites W2070038402 @default.
- W2586481174 cites W2084716923 @default.
- W2586481174 cites W2086953401 @default.
- W2586481174 cites W2089571385 @default.
- W2586481174 cites W2093582341 @default.
- W2586481174 cites W2104294146 @default.
- W2586481174 cites W2110662122 @default.
- W2586481174 cites W2112274848 @default.
- W2586481174 cites W2115429828 @default.
- W2586481174 cites W2121323570 @default.
- W2586481174 cites W2121647436 @default.
- W2586481174 cites W2123921160 @default.
- W2586481174 cites W2128638419 @default.
- W2586481174 cites W2129812935 @default.
- W2586481174 cites W2138451337 @default.
- W2586481174 cites W2153663612 @default.
- W2586481174 cites W2154872931 @default.
- W2586481174 cites W2156909104 @default.
- W2586481174 cites W2157785665 @default.
- W2586481174 cites W2160547390 @default.
- W2586481174 cites W2297991835 @default.
- W2586481174 cites W2994340921 @default.
- W2586481174 cites W3021189487 @default.
- W2586481174 cites W94937181 @default.
- W2586481174 cites W2889106020 @default.
- W2586481174 doi "https://doi.org/10.1109/smc.2016.7844717" @default.
- W2586481174 hasPublicationYear "2016" @default.
- W2586481174 type Work @default.
- W2586481174 sameAs 2586481174 @default.
- W2586481174 citedByCount "0" @default.
- W2586481174 crossrefType "proceedings-article" @default.
- W2586481174 hasAuthorship W2586481174A5012756702 @default.
- W2586481174 hasAuthorship W2586481174A5084573070 @default.
- W2586481174 hasConcept C11413529 @default.
- W2586481174 hasConcept C119857082 @default.
- W2586481174 hasConcept C124066611 @default.
- W2586481174 hasConcept C144024400 @default.
- W2586481174 hasConcept C153180895 @default.
- W2586481174 hasConcept C154771677 @default.
- W2586481174 hasConcept C154945302 @default.
- W2586481174 hasConcept C184898388 @default.
- W2586481174 hasConcept C2777212361 @default.
- W2586481174 hasConcept C2779304628 @default.
- W2586481174 hasConcept C2988886741 @default.
- W2586481174 hasConcept C31510193 @default.
- W2586481174 hasConcept C36289849 @default.
- W2586481174 hasConcept C41008148 @default.
- W2586481174 hasConcept C41608201 @default.
- W2586481174 hasConcept C57493831 @default.
- W2586481174 hasConcept C69738355 @default.
- W2586481174 hasConcept C78397625 @default.
- W2586481174 hasConceptScore W2586481174C11413529 @default.
- W2586481174 hasConceptScore W2586481174C119857082 @default.
- W2586481174 hasConceptScore W2586481174C124066611 @default.
- W2586481174 hasConceptScore W2586481174C144024400 @default.
- W2586481174 hasConceptScore W2586481174C153180895 @default.
- W2586481174 hasConceptScore W2586481174C154771677 @default.
- W2586481174 hasConceptScore W2586481174C154945302 @default.
- W2586481174 hasConceptScore W2586481174C184898388 @default.
- W2586481174 hasConceptScore W2586481174C2777212361 @default.
- W2586481174 hasConceptScore W2586481174C2779304628 @default.
- W2586481174 hasConceptScore W2586481174C2988886741 @default.
- W2586481174 hasConceptScore W2586481174C31510193 @default.
- W2586481174 hasConceptScore W2586481174C36289849 @default.
- W2586481174 hasConceptScore W2586481174C41008148 @default.
- W2586481174 hasConceptScore W2586481174C41608201 @default.
- W2586481174 hasConceptScore W2586481174C57493831 @default.
- W2586481174 hasConceptScore W2586481174C69738355 @default.
- W2586481174 hasConceptScore W2586481174C78397625 @default.
- W2586481174 hasLocation W25864811741 @default.
- W2586481174 hasOpenAccess W2586481174 @default.
- W2586481174 hasPrimaryLocation W25864811741 @default.
- W2586481174 hasRelatedWork W1778286912 @default.
- W2586481174 hasRelatedWork W2026350744 @default.
- W2586481174 hasRelatedWork W2058414309 @default.
- W2586481174 hasRelatedWork W2064227837 @default.
- W2586481174 hasRelatedWork W2088843485 @default.