Matches in SemOpenAlex for { <https://semopenalex.org/work/W2586604920> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2586604920 abstract "Recent advances in precision agriculture technology have increased the potential to capture near-real time data such as planting and yield information. It is well established that information on crop acreage and yield can have value in commodity markets. That is why the USDA conducts farm surveys and freely reports such information. In this study we use a large sample (just over 1.5 million observations) of farm-level corn yield data to consider if it is possible to use non-random farm yield data (such as might be available to providers of precision agriculture services) to accurately predict the national corn yield. Specifically, we examine scenarios where a forecasting agent has data that is not representative either because it is from a limited region or because it consists primarily of large farms. In general, we conclude that large volumes of data can, to some degree, overcome forecasting bias caused by non-representative samples. Moreover, if the forecaster can benchmark against an unbiased estimator, it may be possible to remove much of the bias from estimates generated by non-representative samples." @default.
- W2586604920 created "2017-02-17" @default.
- W2586604920 creator A5032806574 @default.
- W2586604920 creator A5037297486 @default.
- W2586604920 creator A5039109209 @default.
- W2586604920 creator A5060154608 @default.
- W2586604920 creator A5085265382 @default.
- W2586604920 date "2017-01-01" @default.
- W2586604920 modified "2023-09-27" @default.
- W2586604920 title "The Potential Implications of 'Big Ag Data' for USDA Forecasts" @default.
- W2586604920 cites W1968465355 @default.
- W2586604920 cites W2000660679 @default.
- W2586604920 cites W2004807582 @default.
- W2586604920 cites W2015037454 @default.
- W2586604920 cites W2050930135 @default.
- W2586604920 cites W2082122940 @default.
- W2586604920 cites W2088715694 @default.
- W2586604920 cites W2096004071 @default.
- W2586604920 cites W2161612845 @default.
- W2586604920 cites W2165464656 @default.
- W2586604920 cites W4230418690 @default.
- W2586604920 doi "https://doi.org/10.2139/ssrn.2909215" @default.
- W2586604920 hasPublicationYear "2017" @default.
- W2586604920 type Work @default.
- W2586604920 sameAs 2586604920 @default.
- W2586604920 citedByCount "4" @default.
- W2586604920 countsByYear W25866049202018 @default.
- W2586604920 countsByYear W25866049202020 @default.
- W2586604920 countsByYear W25866049202021 @default.
- W2586604920 crossrefType "journal-article" @default.
- W2586604920 hasAuthorship W2586604920A5032806574 @default.
- W2586604920 hasAuthorship W2586604920A5037297486 @default.
- W2586604920 hasAuthorship W2586604920A5039109209 @default.
- W2586604920 hasAuthorship W2586604920A5060154608 @default.
- W2586604920 hasAuthorship W2586604920A5085265382 @default.
- W2586604920 hasConcept C124101348 @default.
- W2586604920 hasConcept C144133560 @default.
- W2586604920 hasConcept C162324750 @default.
- W2586604920 hasConcept C41008148 @default.
- W2586604920 hasConcept C75684735 @default.
- W2586604920 hasConceptScore W2586604920C124101348 @default.
- W2586604920 hasConceptScore W2586604920C144133560 @default.
- W2586604920 hasConceptScore W2586604920C162324750 @default.
- W2586604920 hasConceptScore W2586604920C41008148 @default.
- W2586604920 hasConceptScore W2586604920C75684735 @default.
- W2586604920 hasLocation W25866049201 @default.
- W2586604920 hasOpenAccess W2586604920 @default.
- W2586604920 hasPrimaryLocation W25866049201 @default.
- W2586604920 hasRelatedWork W2218513093 @default.
- W2586604920 hasRelatedWork W2497432351 @default.
- W2586604920 hasRelatedWork W2499527417 @default.
- W2586604920 hasRelatedWork W2899084033 @default.
- W2586604920 hasRelatedWork W2910064364 @default.
- W2586604920 hasRelatedWork W2960264696 @default.
- W2586604920 hasRelatedWork W4206777497 @default.
- W2586604920 hasRelatedWork W4247566972 @default.
- W2586604920 hasRelatedWork W4255224757 @default.
- W2586604920 hasRelatedWork W3090563135 @default.
- W2586604920 isParatext "false" @default.
- W2586604920 isRetracted "false" @default.
- W2586604920 magId "2586604920" @default.
- W2586604920 workType "article" @default.