Matches in SemOpenAlex for { <https://semopenalex.org/work/W2586785995> ?p ?o ?g. }
- W2586785995 endingPage "1872" @default.
- W2586785995 startingPage "1859" @default.
- W2586785995 abstract "Morphological attribute profiles are multilevel decompositions of images obtained with a sequence of transformations performed by connected operators. They have been extensively employed in performing multi-scale and region-based analysis in a large number of applications. One main, still unresolved, issue is the selection of filter parameters able to provide representative and non-redundant threshold decomposition of the image. This paper presents a framework for the automatic selection of filter thresholds based on Granulometric Characteristic Functions (GCFs). GCFs describe the way that non-linear morphological filters simplify a scene according to a given measure. Since attribute filters rely on a hierarchical representation of an image (e.g., the Tree of Shapes) for their implementation, GCFs can be efficiently computed by taking advantage of the tree representation. Eventually, the study of the GCFs allows the identification of a meaningful set of thresholds. Therefore, a trial and error approach is not necessary for the threshold selection, automating the process and in turn decreasing the computational time. It is shown that the redundant information is reduced within the resulting profiles (a problem of high occurrence, as regards manual selection). The proposed approach is tested on two real remote sensing data sets, and the classification results are compared with strategies present in the literature." @default.
- W2586785995 created "2017-02-17" @default.
- W2586785995 creator A5002687387 @default.
- W2586785995 creator A5040558555 @default.
- W2586785995 creator A5050760333 @default.
- W2586785995 creator A5058680339 @default.
- W2586785995 date "2017-04-01" @default.
- W2586785995 modified "2023-10-17" @default.
- W2586785995 title "Automatic Attribute Profiles" @default.
- W2586785995 cites W138525918 @default.
- W2586785995 cites W1483589200 @default.
- W2586785995 cites W1527452326 @default.
- W2586785995 cites W1539437305 @default.
- W2586785995 cites W1574100544 @default.
- W2586785995 cites W1627595462 @default.
- W2586785995 cites W1922008758 @default.
- W2586785995 cites W1970459502 @default.
- W2586785995 cites W1975610128 @default.
- W2586785995 cites W1976416886 @default.
- W2586785995 cites W1985973695 @default.
- W2586785995 cites W1993337810 @default.
- W2586785995 cites W2002789811 @default.
- W2586785995 cites W2004905374 @default.
- W2586785995 cites W2008835672 @default.
- W2586785995 cites W2041227601 @default.
- W2586785995 cites W2047076586 @default.
- W2586785995 cites W2053615857 @default.
- W2586785995 cites W2059903402 @default.
- W2586785995 cites W2071640676 @default.
- W2586785995 cites W2076035429 @default.
- W2586785995 cites W2080517633 @default.
- W2586785995 cites W2083541351 @default.
- W2586785995 cites W2086576628 @default.
- W2586785995 cites W2093555426 @default.
- W2586785995 cites W2095771309 @default.
- W2586785995 cites W2101479772 @default.
- W2586785995 cites W2111256709 @default.
- W2586785995 cites W2112720808 @default.
- W2586785995 cites W2118386984 @default.
- W2586785995 cites W2123046940 @default.
- W2586785995 cites W2127199143 @default.
- W2586785995 cites W2146037576 @default.
- W2586785995 cites W2146842130 @default.
- W2586785995 cites W2154174545 @default.
- W2586785995 cites W2157691228 @default.
- W2586785995 cites W2166537917 @default.
- W2586785995 cites W2167687153 @default.
- W2586785995 cites W2193955255 @default.
- W2586785995 cites W2239725643 @default.
- W2586785995 cites W2322601319 @default.
- W2586785995 cites W2335901235 @default.
- W2586785995 cites W2487963376 @default.
- W2586785995 cites W4255306344 @default.
- W2586785995 cites W4292003313 @default.
- W2586785995 doi "https://doi.org/10.1109/tip.2017.2664667" @default.
- W2586785995 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28182557" @default.
- W2586785995 hasPublicationYear "2017" @default.
- W2586785995 type Work @default.
- W2586785995 sameAs 2586785995 @default.
- W2586785995 citedByCount "35" @default.
- W2586785995 countsByYear W25867859952017 @default.
- W2586785995 countsByYear W25867859952018 @default.
- W2586785995 countsByYear W25867859952019 @default.
- W2586785995 countsByYear W25867859952020 @default.
- W2586785995 countsByYear W25867859952021 @default.
- W2586785995 countsByYear W25867859952022 @default.
- W2586785995 countsByYear W25867859952023 @default.
- W2586785995 crossrefType "journal-article" @default.
- W2586785995 hasAuthorship W2586785995A5002687387 @default.
- W2586785995 hasAuthorship W2586785995A5040558555 @default.
- W2586785995 hasAuthorship W2586785995A5050760333 @default.
- W2586785995 hasAuthorship W2586785995A5058680339 @default.
- W2586785995 hasBestOaLocation W25867859952 @default.
- W2586785995 hasConcept C106131492 @default.
- W2586785995 hasConcept C111919701 @default.
- W2586785995 hasConcept C113174947 @default.
- W2586785995 hasConcept C11413529 @default.
- W2586785995 hasConcept C115961682 @default.
- W2586785995 hasConcept C116834253 @default.
- W2586785995 hasConcept C124101348 @default.
- W2586785995 hasConcept C124681953 @default.
- W2586785995 hasConcept C134306372 @default.
- W2586785995 hasConcept C153180895 @default.
- W2586785995 hasConcept C154945302 @default.
- W2586785995 hasConcept C177264268 @default.
- W2586785995 hasConcept C17744445 @default.
- W2586785995 hasConcept C18903297 @default.
- W2586785995 hasConcept C199360897 @default.
- W2586785995 hasConcept C199539241 @default.
- W2586785995 hasConcept C2776359362 @default.
- W2586785995 hasConcept C2778112365 @default.
- W2586785995 hasConcept C31972630 @default.
- W2586785995 hasConcept C33923547 @default.
- W2586785995 hasConcept C41008148 @default.
- W2586785995 hasConcept C54355233 @default.
- W2586785995 hasConcept C59822182 @default.
- W2586785995 hasConcept C81917197 @default.
- W2586785995 hasConcept C86803240 @default.