Matches in SemOpenAlex for { <https://semopenalex.org/work/W2587304885> ?p ?o ?g. }
- W2587304885 abstract "The Human Microbiome has been variously associated with the immune-regulatory mechanisms involved in the prevention or development of many non-infectious human diseases such as autoimmunity, allergy and cancer. Integrative approaches which aim at associating the composition of the human microbiome with other available information, such as clinical covariates and environmental predictors, are paramount to develop a more complete understanding of the role of microbiome in disease development. In this manuscript, we propose a Bayesian Dirichlet-Multinomial regression model which uses spike-and-slab priors for the selection of significant associations between a set of available covariates and taxa from a microbiome abundance table. The approach allows straightforward incorporation of the covariates through a log-linear regression parametrization of the parameters of the Dirichlet-Multinomial likelihood. Inference is conducted through a Markov Chain Monte Carlo algorithm, and selection of the significant covariates is based upon the assessment of posterior probabilities of inclusions and the thresholding of the Bayesian false discovery rate. We design a simulation study to evaluate the performance of the proposed method, and then apply our model on a publicly available dataset obtained from the Human Microbiome Project which associates taxa abundances with KEGG orthology pathways. The method is implemented in specifically developed R code, which has been made publicly available. Our method compares favorably in simulations to several recently proposed approaches for similarly structured data, in terms of increased accuracy and reduced false positive as well as false negative rates. In the application to the data from the Human Microbiome Project, a close evaluation of the biological significance of our findings confirms existing associations in the literature." @default.
- W2587304885 created "2017-02-17" @default.
- W2587304885 creator A5030348494 @default.
- W2587304885 creator A5048205042 @default.
- W2587304885 creator A5052692708 @default.
- W2587304885 creator A5060076660 @default.
- W2587304885 creator A5065405793 @default.
- W2587304885 creator A5080337533 @default.
- W2587304885 date "2017-02-08" @default.
- W2587304885 modified "2023-10-06" @default.
- W2587304885 title "An integrative Bayesian Dirichlet-multinomial regression model for the analysis of taxonomic abundances in microbiome data" @default.
- W2587304885 cites W1485174478 @default.
- W2587304885 cites W1597368851 @default.
- W2587304885 cites W1912990956 @default.
- W2587304885 cites W1921009424 @default.
- W2587304885 cites W1921895305 @default.
- W2587304885 cites W1968105193 @default.
- W2587304885 cites W1970685400 @default.
- W2587304885 cites W1973193168 @default.
- W2587304885 cites W2004014148 @default.
- W2587304885 cites W2012420485 @default.
- W2587304885 cites W2013177897 @default.
- W2587304885 cites W2016271868 @default.
- W2587304885 cites W2028147833 @default.
- W2587304885 cites W2029607409 @default.
- W2587304885 cites W2031893281 @default.
- W2587304885 cites W2033239478 @default.
- W2587304885 cites W2034189943 @default.
- W2587304885 cites W2038100201 @default.
- W2587304885 cites W2038838030 @default.
- W2587304885 cites W2043828640 @default.
- W2587304885 cites W2044482540 @default.
- W2587304885 cites W2047978125 @default.
- W2587304885 cites W2050442785 @default.
- W2587304885 cites W2053801811 @default.
- W2587304885 cites W2057593933 @default.
- W2587304885 cites W2058212512 @default.
- W2587304885 cites W2061605654 @default.
- W2587304885 cites W2070404820 @default.
- W2587304885 cites W2071841602 @default.
- W2587304885 cites W2072970694 @default.
- W2587304885 cites W2078599166 @default.
- W2587304885 cites W2092696502 @default.
- W2587304885 cites W2102289973 @default.
- W2587304885 cites W2102453940 @default.
- W2587304885 cites W2102813808 @default.
- W2587304885 cites W2105351532 @default.
- W2587304885 cites W2109553965 @default.
- W2587304885 cites W2110518014 @default.
- W2587304885 cites W2118629634 @default.
- W2587304885 cites W2128769815 @default.
- W2587304885 cites W2131415145 @default.
- W2587304885 cites W2137195441 @default.
- W2587304885 cites W2141014820 @default.
- W2587304885 cites W2151911433 @default.
- W2587304885 cites W2159347337 @default.
- W2587304885 cites W2159633664 @default.
- W2587304885 cites W2162888823 @default.
- W2587304885 cites W2165008361 @default.
- W2587304885 cites W2166624680 @default.
- W2587304885 cites W2170264612 @default.
- W2587304885 cites W2257098925 @default.
- W2587304885 cites W2282772932 @default.
- W2587304885 cites W2343323301 @default.
- W2587304885 cites W2343705343 @default.
- W2587304885 cites W2494737845 @default.
- W2587304885 cites W3098806227 @default.
- W2587304885 cites W3102998992 @default.
- W2587304885 cites W3103387329 @default.
- W2587304885 cites W4244626580 @default.
- W2587304885 doi "https://doi.org/10.1186/s12859-017-1516-0" @default.
- W2587304885 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5363024" @default.
- W2587304885 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28335713" @default.
- W2587304885 hasPublicationYear "2017" @default.
- W2587304885 type Work @default.
- W2587304885 sameAs 2587304885 @default.
- W2587304885 citedByCount "60" @default.
- W2587304885 countsByYear W25873048852017 @default.
- W2587304885 countsByYear W25873048852018 @default.
- W2587304885 countsByYear W25873048852019 @default.
- W2587304885 countsByYear W25873048852020 @default.
- W2587304885 countsByYear W25873048852021 @default.
- W2587304885 countsByYear W25873048852022 @default.
- W2587304885 countsByYear W25873048852023 @default.
- W2587304885 crossrefType "journal-article" @default.
- W2587304885 hasAuthorship W2587304885A5030348494 @default.
- W2587304885 hasAuthorship W2587304885A5048205042 @default.
- W2587304885 hasAuthorship W2587304885A5052692708 @default.
- W2587304885 hasAuthorship W2587304885A5060076660 @default.
- W2587304885 hasAuthorship W2587304885A5065405793 @default.
- W2587304885 hasAuthorship W2587304885A5080337533 @default.
- W2587304885 hasBestOaLocation W25873048851 @default.
- W2587304885 hasConcept C107673813 @default.
- W2587304885 hasConcept C119043178 @default.
- W2587304885 hasConcept C119857082 @default.
- W2587304885 hasConcept C143121216 @default.
- W2587304885 hasConcept C154945302 @default.
- W2587304885 hasConcept C41008148 @default.
- W2587304885 hasConcept C60644358 @default.
- W2587304885 hasConcept C86803240 @default.