Matches in SemOpenAlex for { <https://semopenalex.org/work/W2587548696> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W2587548696 abstract "Low-temperature multi-effect distillation that employs horizontal tube falling film evaporation technology is one of the most promising desalination methods with advantage of high heat transfer coefficient at low temperature, low water- spray density and small heat transfer temperature difference. Falling film evaporators have been widely used in absorb- type chillers, desalination devices and other areas. In a horizontal tube falling film evaporator, water and steam were flowed in different directions. The vertical falling film flow was driven by gravity, whereas the steam flow across the tube bundle was driven by pressure difference. Hence, the pressure drop and the consequent temperature drop of the steam are not only caused by the tube bundle but also by the falling water. In this paper, the effects of parameters such as spray density were determined. Experimental measurement of pressure drop data during the saturated steam flowing across aluminum brass tube bundles was carried out. The pressure drop coefficient was obtained from the experimental data. The rotated square-arranged tube bundle was chosen as a physical model to calculate the steam temperature difference drop on falling film evaporation. Based on the experimental data, the fitting pressure drop coefficient was employed in this calculation. The numerical codes were developed to simulate the steady-state performance of temperature difference drop in horizontal tube falling film evaporation. The iterative procedure was required based on the initial values with a close chain of equations and parameters. The solution was obtained through a step-by-step method. This quantitative temperature difference drops caused by the pressure drop can be calculated by the solution. The influences of spray density, saturated temperature, and tube column number on vapor temperature difference drop were analyzed respectively. The temperature difference drop caused by the pressure drop will decrease the temperature difference. The effect of temperature difference drop can be analyzed in two aspects. On the one hand, the temperature difference drop directly reduces the difference in heat transfer temperature, and thus, decreases heat transfer rate; on the other hand, the temperature difference drop generally increases the heat transfer coefficient under a certain heat transfer flux. When temperature difference drop is considered in a calculation, the heat transfer coefficient can be derived more accurately. Moreover, an accurate calculation of the temperature difference drop can provide a more detailed analysis on the influence factors of the heat transfer coefficient. At a certain tube arrangement and the same steam flow flux, the results showed that the temperature difference drop increases with the increase of spray density. It can be showed that the temperature difference drop at 50°C is 3.5 times of that at 70°C. However, the temperature difference drop decreases with the increase of saturated temperature. The temperature difference drop at spray density of 0.08 kg/(m s) is almost double of that at spray density of 0.02 kg/(m s). The calculations also show that the temperature difference drop is in parabolic rise with the increase of tube column number. When the temperature difference drop is set at lower than 0.3°C, the maximum tube column ( N max) can be obtained. The results showed that the N max increases with increasing saturated temperature, but decreases with increasing spray density. The N max can be employed to determine the heat transfer area for optimization design of the heat exchanger." @default.
- W2587548696 created "2017-02-17" @default.
- W2587548696 creator A5002656825 @default.
- W2587548696 creator A5013561666 @default.
- W2587548696 creator A5027862454 @default.
- W2587548696 creator A5089597748 @default.
- W2587548696 date "2016-10-14" @default.
- W2587548696 modified "2023-09-24" @default.
- W2587548696 title "Heat transfer temperature difference drop on falling film evaporation of horizontal tube bundle in rotated square-arranged" @default.
- W2587548696 doi "https://doi.org/10.1360/n972016-00300" @default.
- W2587548696 hasPublicationYear "2016" @default.
- W2587548696 type Work @default.
- W2587548696 sameAs 2587548696 @default.
- W2587548696 citedByCount "0" @default.
- W2587548696 crossrefType "journal-article" @default.
- W2587548696 hasAuthorship W2587548696A5002656825 @default.
- W2587548696 hasAuthorship W2587548696A5013561666 @default.
- W2587548696 hasAuthorship W2587548696A5027862454 @default.
- W2587548696 hasAuthorship W2587548696A5089597748 @default.
- W2587548696 hasBestOaLocation W25875486961 @default.
- W2587548696 hasConcept C107706546 @default.
- W2587548696 hasConcept C114088122 @default.
- W2587548696 hasConcept C121332964 @default.
- W2587548696 hasConcept C127413603 @default.
- W2587548696 hasConcept C159985019 @default.
- W2587548696 hasConcept C192562407 @default.
- W2587548696 hasConcept C2777551473 @default.
- W2587548696 hasConcept C2778134712 @default.
- W2587548696 hasConcept C2779079380 @default.
- W2587548696 hasConcept C2781345722 @default.
- W2587548696 hasConcept C29700514 @default.
- W2587548696 hasConcept C50517652 @default.
- W2587548696 hasConcept C57879066 @default.
- W2587548696 hasConcept C71924100 @default.
- W2587548696 hasConcept C78519656 @default.
- W2587548696 hasConcept C91311341 @default.
- W2587548696 hasConcept C97355855 @default.
- W2587548696 hasConcept C99454951 @default.
- W2587548696 hasConceptScore W2587548696C107706546 @default.
- W2587548696 hasConceptScore W2587548696C114088122 @default.
- W2587548696 hasConceptScore W2587548696C121332964 @default.
- W2587548696 hasConceptScore W2587548696C127413603 @default.
- W2587548696 hasConceptScore W2587548696C159985019 @default.
- W2587548696 hasConceptScore W2587548696C192562407 @default.
- W2587548696 hasConceptScore W2587548696C2777551473 @default.
- W2587548696 hasConceptScore W2587548696C2778134712 @default.
- W2587548696 hasConceptScore W2587548696C2779079380 @default.
- W2587548696 hasConceptScore W2587548696C2781345722 @default.
- W2587548696 hasConceptScore W2587548696C29700514 @default.
- W2587548696 hasConceptScore W2587548696C50517652 @default.
- W2587548696 hasConceptScore W2587548696C57879066 @default.
- W2587548696 hasConceptScore W2587548696C71924100 @default.
- W2587548696 hasConceptScore W2587548696C78519656 @default.
- W2587548696 hasConceptScore W2587548696C91311341 @default.
- W2587548696 hasConceptScore W2587548696C97355855 @default.
- W2587548696 hasConceptScore W2587548696C99454951 @default.
- W2587548696 hasLocation W25875486961 @default.
- W2587548696 hasOpenAccess W2587548696 @default.
- W2587548696 hasPrimaryLocation W25875486961 @default.
- W2587548696 hasRelatedWork W188315406 @default.
- W2587548696 hasRelatedWork W1969898746 @default.
- W2587548696 hasRelatedWork W1980425889 @default.
- W2587548696 hasRelatedWork W1997445096 @default.
- W2587548696 hasRelatedWork W2012195895 @default.
- W2587548696 hasRelatedWork W2024072593 @default.
- W2587548696 hasRelatedWork W2261441506 @default.
- W2587548696 hasRelatedWork W2395971756 @default.
- W2587548696 hasRelatedWork W2606209020 @default.
- W2587548696 hasRelatedWork W2653788272 @default.
- W2587548696 hasRelatedWork W2757032912 @default.
- W2587548696 hasRelatedWork W2775180214 @default.
- W2587548696 hasRelatedWork W2888307476 @default.
- W2587548696 hasRelatedWork W3150491591 @default.
- W2587548696 hasRelatedWork W3175328841 @default.
- W2587548696 hasRelatedWork W69866416 @default.
- W2587548696 hasRelatedWork W781734589 @default.
- W2587548696 hasRelatedWork W86761626 @default.
- W2587548696 hasRelatedWork W914610744 @default.
- W2587548696 hasRelatedWork W97525758 @default.
- W2587548696 isParatext "false" @default.
- W2587548696 isRetracted "false" @default.
- W2587548696 magId "2587548696" @default.
- W2587548696 workType "article" @default.