Matches in SemOpenAlex for { <https://semopenalex.org/work/W2587553228> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2587553228 abstract "Text classification is a major problem and an evolving area of wide research with many algorithms had been already proposed. With the recent advancements in the field of Ensemble Learning there are many new techniques consistently emerging that need to be implemented for text classification in search of a better classifier. In this paper, a machine learning model BagBoo, which is a combination of Bag + Boo, where Bag and Boo are representing the Bagging and Boosting respectively. BagBoo model in essence gains its performance from using Bagged ensemble of Boosted trees. In this paper, it is a specific model we use to build our own text classifier using the already existing or some self-modified Bagging and Boosting techniques. We run evaluations on Reuters 21578 data sets 10 most frequent classes, SMS Spam Collection [1] data set, DBWorld e-mails Data Set and shown through results whether our implementation of BagBoo gives a better performance for text based classification. Results show that the proposed method can achieve an accuracy of 78.94% and 94.21% with SVM and J48 classifier on DBword datasets." @default.
- W2587553228 created "2017-02-17" @default.
- W2587553228 creator A5004099006 @default.
- W2587553228 creator A5042353021 @default.
- W2587553228 creator A5068764528 @default.
- W2587553228 date "2016-11-01" @default.
- W2587553228 modified "2023-10-01" @default.
- W2587553228 title "A Scalable Hybrid Ensemble model for text classification" @default.
- W2587553228 cites W2000369940 @default.
- W2587553228 cites W2065221212 @default.
- W2587553228 cites W2070493638 @default.
- W2587553228 cites W2085005783 @default.
- W2587553228 cites W2119821739 @default.
- W2587553228 cites W2140190241 @default.
- W2587553228 cites W2153635508 @default.
- W2587553228 cites W2168278308 @default.
- W2587553228 cites W2250473257 @default.
- W2587553228 cites W23149702 @default.
- W2587553228 cites W2911964244 @default.
- W2587553228 doi "https://doi.org/10.1109/tencon.2016.7848630" @default.
- W2587553228 hasPublicationYear "2016" @default.
- W2587553228 type Work @default.
- W2587553228 sameAs 2587553228 @default.
- W2587553228 citedByCount "1" @default.
- W2587553228 countsByYear W25875532282019 @default.
- W2587553228 crossrefType "proceedings-article" @default.
- W2587553228 hasAuthorship W2587553228A5004099006 @default.
- W2587553228 hasAuthorship W2587553228A5042353021 @default.
- W2587553228 hasAuthorship W2587553228A5068764528 @default.
- W2587553228 hasConcept C110083411 @default.
- W2587553228 hasConcept C119857082 @default.
- W2587553228 hasConcept C12267149 @default.
- W2587553228 hasConcept C124101348 @default.
- W2587553228 hasConcept C154945302 @default.
- W2587553228 hasConcept C41008148 @default.
- W2587553228 hasConcept C45942800 @default.
- W2587553228 hasConcept C46686674 @default.
- W2587553228 hasConcept C48044578 @default.
- W2587553228 hasConcept C51632099 @default.
- W2587553228 hasConcept C52001869 @default.
- W2587553228 hasConcept C52003472 @default.
- W2587553228 hasConcept C77088390 @default.
- W2587553228 hasConcept C95623464 @default.
- W2587553228 hasConceptScore W2587553228C110083411 @default.
- W2587553228 hasConceptScore W2587553228C119857082 @default.
- W2587553228 hasConceptScore W2587553228C12267149 @default.
- W2587553228 hasConceptScore W2587553228C124101348 @default.
- W2587553228 hasConceptScore W2587553228C154945302 @default.
- W2587553228 hasConceptScore W2587553228C41008148 @default.
- W2587553228 hasConceptScore W2587553228C45942800 @default.
- W2587553228 hasConceptScore W2587553228C46686674 @default.
- W2587553228 hasConceptScore W2587553228C48044578 @default.
- W2587553228 hasConceptScore W2587553228C51632099 @default.
- W2587553228 hasConceptScore W2587553228C52001869 @default.
- W2587553228 hasConceptScore W2587553228C52003472 @default.
- W2587553228 hasConceptScore W2587553228C77088390 @default.
- W2587553228 hasConceptScore W2587553228C95623464 @default.
- W2587553228 hasLocation W25875532281 @default.
- W2587553228 hasOpenAccess W2587553228 @default.
- W2587553228 hasPrimaryLocation W25875532281 @default.
- W2587553228 hasRelatedWork W1976812808 @default.
- W2587553228 hasRelatedWork W1990687717 @default.
- W2587553228 hasRelatedWork W1996006735 @default.
- W2587553228 hasRelatedWork W2104813983 @default.
- W2587553228 hasRelatedWork W2128603004 @default.
- W2587553228 hasRelatedWork W2137625224 @default.
- W2587553228 hasRelatedWork W2147221611 @default.
- W2587553228 hasRelatedWork W2171237441 @default.
- W2587553228 hasRelatedWork W2192176479 @default.
- W2587553228 hasRelatedWork W2240326247 @default.
- W2587553228 hasRelatedWork W2284199375 @default.
- W2587553228 hasRelatedWork W2538939667 @default.
- W2587553228 hasRelatedWork W2586068811 @default.
- W2587553228 hasRelatedWork W2588963387 @default.
- W2587553228 hasRelatedWork W2921333516 @default.
- W2587553228 hasRelatedWork W2943522966 @default.
- W2587553228 hasRelatedWork W3109645253 @default.
- W2587553228 hasRelatedWork W3162617207 @default.
- W2587553228 hasRelatedWork W3179325884 @default.
- W2587553228 hasRelatedWork W2905430408 @default.
- W2587553228 isParatext "false" @default.
- W2587553228 isRetracted "false" @default.
- W2587553228 magId "2587553228" @default.
- W2587553228 workType "article" @default.