Matches in SemOpenAlex for { <https://semopenalex.org/work/W2587661679> ?p ?o ?g. }
- W2587661679 endingPage "064105" @default.
- W2587661679 startingPage "064105" @default.
- W2587661679 abstract "The development of semilocal models for the kinetic energy density (KED) is an important topic in density functional theory (DFT). This is especially true for subsystem DFT, where these models are necessary to construct the required non-additive embedding contributions. In particular, these models can also be efficiently employed to replace the exact KED in meta-Generalized Gradient Approximation (meta-GGA) exchange-correlation functionals allowing to extend the subsystem DFT applicability to the meta-GGA level of theory. Here, we present a two-dimensional scan of semilocal KED models as linear functionals of the reduced gradient and of the reduced Laplacian, for atoms and weakly-bound molecular systems. We find that several models can perform well but in any case the Laplacian contribution is extremely important to model the local features of the KED. Indeed a simple model constructed as the sum of Thomas-Fermi KED and 1/6 of the Laplacian of the density yields the best accuracy for atoms and weakly-bound molecular systems. These KED models are tested within subsystem DFT with various meta-GGA exchange-correlation functionals for non-bonded systems, showing a good accuracy of the method." @default.
- W2587661679 created "2017-02-17" @default.
- W2587661679 creator A5023543793 @default.
- W2587661679 creator A5028212281 @default.
- W2587661679 creator A5038671203 @default.
- W2587661679 creator A5056809505 @default.
- W2587661679 date "2017-02-14" @default.
- W2587661679 modified "2023-09-25" @default.
- W2587661679 title "Laplacian-dependent models of the kinetic energy density: Applications in subsystem density functional theory with meta-generalized gradient approximation functionals" @default.
- W2587661679 cites W1002577204 @default.
- W2587661679 cites W1614843501 @default.
- W2587661679 cites W174286132 @default.
- W2587661679 cites W1823840186 @default.
- W2587661679 cites W1911079616 @default.
- W2587661679 cites W1964258991 @default.
- W2587661679 cites W1965452714 @default.
- W2587661679 cites W1972782299 @default.
- W2587661679 cites W1973638410 @default.
- W2587661679 cites W1974943505 @default.
- W2587661679 cites W1981368803 @default.
- W2587661679 cites W1982062653 @default.
- W2587661679 cites W1987661404 @default.
- W2587661679 cites W1988091937 @default.
- W2587661679 cites W1989335167 @default.
- W2587661679 cites W1999478965 @default.
- W2587661679 cites W2001753500 @default.
- W2587661679 cites W2002484561 @default.
- W2587661679 cites W2003286577 @default.
- W2587661679 cites W2005220728 @default.
- W2587661679 cites W2005506333 @default.
- W2587661679 cites W2010285095 @default.
- W2587661679 cites W2011804861 @default.
- W2587661679 cites W2015870167 @default.
- W2587661679 cites W2018276631 @default.
- W2587661679 cites W2018495518 @default.
- W2587661679 cites W2018622673 @default.
- W2587661679 cites W2019129634 @default.
- W2587661679 cites W2020362958 @default.
- W2587661679 cites W2020786104 @default.
- W2587661679 cites W2023390323 @default.
- W2587661679 cites W2025158009 @default.
- W2587661679 cites W2032719166 @default.
- W2587661679 cites W2033531291 @default.
- W2587661679 cites W2037129309 @default.
- W2587661679 cites W2038583777 @default.
- W2587661679 cites W2041654606 @default.
- W2587661679 cites W2045162020 @default.
- W2587661679 cites W2047644723 @default.
- W2587661679 cites W2052003880 @default.
- W2587661679 cites W2052099987 @default.
- W2587661679 cites W2053198978 @default.
- W2587661679 cites W2057020354 @default.
- W2587661679 cites W2061724428 @default.
- W2587661679 cites W2074370853 @default.
- W2587661679 cites W2076759175 @default.
- W2587661679 cites W2077295152 @default.
- W2587661679 cites W2078018986 @default.
- W2587661679 cites W2079843014 @default.
- W2587661679 cites W2084585237 @default.
- W2587661679 cites W2087420034 @default.
- W2587661679 cites W2088819993 @default.
- W2587661679 cites W2089271765 @default.
- W2587661679 cites W2093914988 @default.
- W2587661679 cites W2102867322 @default.
- W2587661679 cites W2112054650 @default.
- W2587661679 cites W2114982976 @default.
- W2587661679 cites W2118852629 @default.
- W2587661679 cites W2142501550 @default.
- W2587661679 cites W2146747898 @default.
- W2587661679 cites W2150195378 @default.
- W2587661679 cites W2166750802 @default.
- W2587661679 cites W2168368024 @default.
- W2587661679 cites W2224031763 @default.
- W2587661679 cites W2230728100 @default.
- W2587661679 cites W2246523982 @default.
- W2587661679 cites W2253854557 @default.
- W2587661679 cites W2314134555 @default.
- W2587661679 cites W2315782355 @default.
- W2587661679 cites W2316749145 @default.
- W2587661679 cites W2320381313 @default.
- W2587661679 cites W2321929780 @default.
- W2587661679 cites W2322065195 @default.
- W2587661679 cites W2328198700 @default.
- W2587661679 cites W2399940957 @default.
- W2587661679 cites W2411551923 @default.
- W2587661679 cites W2438541361 @default.
- W2587661679 cites W2482814046 @default.
- W2587661679 cites W2504248615 @default.
- W2587661679 cites W2509615666 @default.
- W2587661679 cites W2963309365 @default.
- W2587661679 cites W2963657244 @default.
- W2587661679 cites W2998313242 @default.
- W2587661679 cites W3098036074 @default.
- W2587661679 cites W3098463108 @default.
- W2587661679 cites W3103127239 @default.
- W2587661679 cites W3187163767 @default.
- W2587661679 cites W4212866714 @default.
- W2587661679 cites W4250497934 @default.