Matches in SemOpenAlex for { <https://semopenalex.org/work/W2587770641> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2587770641 abstract "This paper presents a novel strategy for weed monitoring, using images taken with unmanned aerial vehicles (UAVs) and concepts of image analysis and machine learning. Weed control in precision agriculture designs site-specific treatments based on the coverage of weeds, where the key is to provide precise weed maps timely. Most traditional remote platforms, e.g. piloted planes or satellites, are, however, not suitable for early weed monitoring, given their low temporal and spatial resolutions, as opposed to he ultra-high spatial resolution of UAVs. The system here proposed makes use of UAV-imagery and is based on: 1) Divide the image, 2) compute and binarise the vegetation indexes, 3) detect crop rows, 4) optimise the parameters and 4) learn a classification model. Since crops are usually organised in rows, the use of a crop row detection algorithm helps to separate properly weed and crop pixels, which is a common handicap given the spectral similitude of both. Several artificial intelligence paradigms are compared in this paper to identify the most suitable strategy for this topic (i.e. unsupervised, supervised and semi-supervised approaches). Our experiments also study the effect of different parameteres: the flight altitude, the sensor and the use of previously trained models at a different height. Our results show that 1) very promising performance can be obtained, even when using very few labelled data and 2) the classification model can be learnt in a subplot of the experimental field at low altitude and then applied to the whole field at a higher height, which simplifies the whole process. These results motivate the use of this strategy to design weed monitoring strategies for early post-emergence weed control." @default.
- W2587770641 created "2017-02-24" @default.
- W2587770641 creator A5039366911 @default.
- W2587770641 creator A5063964437 @default.
- W2587770641 creator A5065093980 @default.
- W2587770641 creator A5081289303 @default.
- W2587770641 creator A5086980043 @default.
- W2587770641 creator A5087993757 @default.
- W2587770641 date "2016-12-01" @default.
- W2587770641 modified "2023-10-18" @default.
- W2587770641 title "Machine learning paradigms for weed mapping via unmanned aerial vehicles" @default.
- W2587770641 cites W1594573182 @default.
- W2587770641 cites W1645840676 @default.
- W2587770641 cites W1963812460 @default.
- W2587770641 cites W1971547344 @default.
- W2587770641 cites W1973700570 @default.
- W2587770641 cites W1977752134 @default.
- W2587770641 cites W2011270889 @default.
- W2587770641 cites W2011430131 @default.
- W2587770641 cites W2019416082 @default.
- W2587770641 cites W2055186043 @default.
- W2587770641 cites W2059472991 @default.
- W2587770641 cites W2060992958 @default.
- W2587770641 cites W2080091930 @default.
- W2587770641 cites W2081286693 @default.
- W2587770641 cites W2094651390 @default.
- W2587770641 cites W2095537868 @default.
- W2587770641 cites W2095905764 @default.
- W2587770641 cites W2098757594 @default.
- W2587770641 cites W2103748993 @default.
- W2587770641 cites W2119059400 @default.
- W2587770641 cites W2133059825 @default.
- W2587770641 cites W2163450852 @default.
- W2587770641 cites W2166516660 @default.
- W2587770641 cites W2172000360 @default.
- W2587770641 cites W2251608823 @default.
- W2587770641 doi "https://doi.org/10.1109/ssci.2016.7849987" @default.
- W2587770641 hasPublicationYear "2016" @default.
- W2587770641 type Work @default.
- W2587770641 sameAs 2587770641 @default.
- W2587770641 citedByCount "15" @default.
- W2587770641 countsByYear W25877706412017 @default.
- W2587770641 countsByYear W25877706412018 @default.
- W2587770641 countsByYear W25877706412019 @default.
- W2587770641 countsByYear W25877706412020 @default.
- W2587770641 countsByYear W25877706412021 @default.
- W2587770641 countsByYear W25877706412022 @default.
- W2587770641 crossrefType "proceedings-article" @default.
- W2587770641 hasAuthorship W2587770641A5039366911 @default.
- W2587770641 hasAuthorship W2587770641A5063964437 @default.
- W2587770641 hasAuthorship W2587770641A5065093980 @default.
- W2587770641 hasAuthorship W2587770641A5081289303 @default.
- W2587770641 hasAuthorship W2587770641A5086980043 @default.
- W2587770641 hasAuthorship W2587770641A5087993757 @default.
- W2587770641 hasConcept C154945302 @default.
- W2587770641 hasConcept C2775891814 @default.
- W2587770641 hasConcept C41008148 @default.
- W2587770641 hasConcept C6557445 @default.
- W2587770641 hasConcept C86803240 @default.
- W2587770641 hasConceptScore W2587770641C154945302 @default.
- W2587770641 hasConceptScore W2587770641C2775891814 @default.
- W2587770641 hasConceptScore W2587770641C41008148 @default.
- W2587770641 hasConceptScore W2587770641C6557445 @default.
- W2587770641 hasConceptScore W2587770641C86803240 @default.
- W2587770641 hasLocation W25877706411 @default.
- W2587770641 hasOpenAccess W2587770641 @default.
- W2587770641 hasPrimaryLocation W25877706411 @default.
- W2587770641 hasRelatedWork W2093578348 @default.
- W2587770641 hasRelatedWork W2157457846 @default.
- W2587770641 hasRelatedWork W2358668433 @default.
- W2587770641 hasRelatedWork W2376932109 @default.
- W2587770641 hasRelatedWork W2382290278 @default.
- W2587770641 hasRelatedWork W2390279801 @default.
- W2587770641 hasRelatedWork W2593562831 @default.
- W2587770641 hasRelatedWork W2748952813 @default.
- W2587770641 hasRelatedWork W2899084033 @default.
- W2587770641 hasRelatedWork W3012529405 @default.
- W2587770641 isParatext "false" @default.
- W2587770641 isRetracted "false" @default.
- W2587770641 magId "2587770641" @default.
- W2587770641 workType "article" @default.